Quantifying molecular and cellular constraints on protein function through in vivo fitness assays and computational protein design
通过体内适应性测定和计算蛋白质设计量化蛋白质功能的分子和细胞限制
基本信息
- 批准号:1615990
- 负责人:
- 金额:$ 99.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins facilitate nearly every useful function in biology, and there is enormous potential in designing proteins to perform completely new functions. These new functions might be useful in industry, enabling the manufacture of a new chemical, or in health care or the environment. However, many functions are currently too complex to design by current predictive methods. This project seeks to address a major bottleneck by advancing computational models to include multiple functional states of the protein. The project will then utilize these multi-state models to provide fundamental insights into design principles of how proteins function both at the molecular level and in the complex environment of living cells. More broadly, the resulting new methods and knowledge will advance academic and industrial design of useful new proteins such as biocatalysts for cost-effective and environmentally responsible manufacturing. The developed computational methods will be integrated into the protein design software suite Rosetta, which is available freely as source code to a large community of academic users, and is licensed by several biotechnological and pharmaceutical companies. New design methods will be integrated into graduate-level courses, and will be incorporated in research and outreach activities focused on students from socioeconomically disadvantaged backgrounds, underrepresented groups, and women in computational sciences.Progress in the ability to design proteins with functions not existing in nature has been limited by an incomplete understanding of the key constraints on protein function that need to be captured by a predictive model. To advance modeling and design of proteins, the objectives of this project are to determine molecular and cellular constraints on protein function, and to incorporate this knowledge into improved computational methods to design proteins under multiple functional constraints. This project will first establish an experimental system that allows for a comprehensive examination of the effect of sequence changes on function, and the ability to predict these effects computationally. Experiments will interrogate the metabolic enzyme dihydrofolate reductase using deep mutational scanning and in vivo assays that will determine how fitness effects of thousands of variants change in different backgrounds that perturb molecular function and cellular context. Second, the project seeks to advance computational protein design methods to model protein sequences under multiple constraints. Tests of the model by comparison to experiments will guide critically needed improvements and will identify cellular constraints not captured by the multi-state model. The resulting knowledge will lead to improved computational methods to model and design proteins by considering multiple functional constraints that can be applied to important challenges in engineering new and useful protein functions.This award is supported by the Systems and Synthetic Biology Program and the Molecular Biophysics Program in the Division of Molecular and Cellular Biosciences, and the Chemistry of Life Processes Program in the Division of Chemistry.
Proteins facilitate nearly every useful function in biology, and there is enormous potential in designing proteins to perform completely new functions. These new functions might be useful in industry, enabling the manufacture of a new chemical, or in health care or the environment. However, many functions are currently too complex to design by current predictive methods. This project seeks to address a major bottleneck by advancing computational models to include multiple functional states of the protein. The project will then utilize these multi-state models to provide fundamental insights into design principles of how proteins function both at the molecular level and in the complex environment of living cells. More broadly, the resulting new methods and knowledge will advance academic and industrial design of useful new proteins such as biocatalysts for cost-effective and environmentally responsible manufacturing. The developed computational methods will be integrated into the protein design software suite Rosetta, which is available freely as source code to a large community of academic users, and is licensed by several biotechnological and pharmaceutical companies. New design methods will be integrated into graduate-level courses, and will be incorporated in research and outreach activities focused on students from socioeconomically disadvantaged backgrounds, underrepresented groups, and women in computational sciences.Progress in the ability to design proteins with functions not existing in nature has been limited by an incomplete understanding of the key constraints on protein function that need to be captured by a predictive model. To advance modeling and design of proteins, the objectives of this project are to determine molecular and cellular constraints on protein function, and to incorporate this knowledge into improved computational methods to design proteins under multiple functional constraints. This project will first establish an experimental system that allows for a comprehensive examination of the effect of sequence changes on function, and the ability to predict these effects computationally. Experiments will interrogate the metabolic enzyme dihydrofolate reductase using deep mutational scanning and in vivo assays that will determine how fitness effects of thousands of variants change in different backgrounds that perturb molecular function and cellular context. Second, the project seeks to advance computational protein design methods to model protein sequences under multiple constraints. Tests of the model by comparison to experiments will guide critically needed improvements and will identify cellular constraints not captured by the multi-state model. The resulting knowledge will lead to improved computational methods to model and design proteins by considering multiple functional constraints that can be applied to important challenges in engineering new and useful protein functions.This award is supported by the Systems and Synthetic Biology Program and the Molecular Biophysics Program in the Division of Molecular and Cellular Biosciences, and the Chemistry of Life Processes Program in the Division of Chemistry.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanja Kortemme其他文献
A Model for the Molecular Mechanism of an Engineered Light-Driven Protein Machine
- DOI:
10.1016/j.str.2016.02.015 - 发表时间:
2016-04-05 - 期刊:
- 影响因子:
- 作者:
Daniel Hoersch;Tanja Kortemme - 通讯作者:
Tanja Kortemme
emDe novo/em protein design—From new structures to programmable functions
从头蛋白质设计——从新结构到可编程功能
- DOI:
10.1016/j.cell.2023.12.028 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:42.500
- 作者:
Tanja Kortemme - 通讯作者:
Tanja Kortemme
Semi-explicit Solvation Improves Ligand Binding Site Design in an Allosteric Protein
- DOI:
10.1016/j.bpj.2019.11.2074 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Zion R. Perry;Anum A. Glasgow;Tanja Kortemme - 通讯作者:
Tanja Kortemme
Cellular Consequences of Systematic Perturbations of a Highly Conserved Biological Switch
- DOI:
10.1016/j.bpj.2017.11.108 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Tanja Kortemme - 通讯作者:
Tanja Kortemme
A complete allosteric map of a GTPase switch in its native cellular network
在其天然细胞网络中 GTPase 开关的完整别构图谱
- DOI:
10.1016/j.cels.2023.01.003 - 发表时间:
2023-03-15 - 期刊:
- 影响因子:7.700
- 作者:
Christopher J.P. Mathy;Parul Mishra;Julia M. Flynn;Tina Perica;David Mavor;Daniel N.A. Bolon;Tanja Kortemme - 通讯作者:
Tanja Kortemme
Tanja Kortemme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanja Kortemme', 18)}}的其他基金
ABI Innovation: Robotics-inspired modeling & design of proteins
ABI Innovation:机器人启发建模
- 批准号:
1564692 - 财政年份:2016
- 资助金额:
$ 99.59万 - 项目类别:
Standard Grant
ABI Innovation: Robotics-inspired modeling and design of proteins
ABI 创新:受机器人启发的蛋白质建模和设计
- 批准号:
1262182 - 财政年份:2013
- 资助金额:
$ 99.59万 - 项目类别:
Standard Grant
Design and engineering of light-controlled cadherin
光控钙粘蛋白的设计与工程
- 批准号:
1134127 - 财政年份:2011
- 资助金额:
$ 99.59万 - 项目类别:
Continuing Grant
RosettaInterface : Advanced Methods and Resources for Characterization and Redesign of Protein-Protein Interactions
RosettaInterface:蛋白质-蛋白质相互作用表征和重新设计的先进方法和资源
- 批准号:
0849400 - 财政年份:2009
- 资助金额:
$ 99.59万 - 项目类别:
Standard Grant
CAREER: A Computational Design Approach for Predicting and Reengineering Plasticity and Selectivity in Protein-protein Interfaces
职业:预测和重新设计蛋白质-蛋白质界面的可塑性和选择性的计算设计方法
- 批准号:
0744541 - 财政年份:2008
- 资助金额:
$ 99.59万 - 项目类别:
Continuing Grant
相似国自然基金
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
- 批准号:82372073
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
- 批准号:82373145
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
- 批准号:82304565
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
- 批准号:82371704
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
- 批准号:31900545
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Administrative Supplements for Equipment Purchases for NIGMS-Funded Award: Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence
NIGMS 资助的设备采购行政补充:通过相关力和荧光量化生物分子凝聚体的生理和病理粘弹性相
- 批准号:
10582189 - 财政年份:2020
- 资助金额:
$ 99.59万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10231209 - 财政年份:2020
- 资助金额:
$ 99.59万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10029306 - 财政年份:2020
- 资助金额:
$ 99.59万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10437758 - 财政年份:2020
- 资助金额:
$ 99.59万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10708765 - 财政年份:2020
- 资助金额:
$ 99.59万 - 项目类别:
Quantifying Heterogeneities in Dengue Virus Transmission Dynamics
量化登革热病毒传播动力学的异质性
- 批准号:
9250054 - 财政年份:2014
- 资助金额:
$ 99.59万 - 项目类别:
Quantifying Heterogeneities in Dengue Virus Transmission Dynamics
量化登革热病毒传播动力学的异质性
- 批准号:
8666959 - 财政年份:2014
- 资助金额:
$ 99.59万 - 项目类别:
Live Cell Interferometry for Quantifying Mass Transport in Cancer
用于量化癌症质量传递的活细胞干涉测量法
- 批准号:
8547027 - 财政年份:2012
- 资助金额:
$ 99.59万 - 项目类别:
Live Cell Interferometry for Quantifying Mass Transport in Cancer
用于量化癌症质量传递的活细胞干涉测量法
- 批准号:
8242477 - 财政年份:2012
- 资助金额:
$ 99.59万 - 项目类别:
Live Cell Interferometry for Quantifying Mass Transport in Cancer
用于量化癌症质量传递的活细胞干涉测量法
- 批准号:
8703633 - 财政年份:2012
- 资助金额:
$ 99.59万 - 项目类别:














{{item.name}}会员




