An ion-based pacemaker at the pollen tube tip: mechanism and functions in apical growth, guidance and cell-cell communication

花粉管尖端的离子起搏器:顶端生长、引导和细胞间通讯的机制和功能

基本信息

  • 批准号:
    1616437
  • 负责人:
  • 金额:
    $ 86.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

An ion-based pacemaker at the pollen tube tip: mechanism and functions in apical growth, guidance and cell-cell communicationThe project will study the role of ion and electric signals generated within the pollen tube, a highly specialized cell involved in the reproduction of flowering plants. These cells are representative of apical growing cells, a group that in addition to pollen tubes, includes fungal hyphae and developing neurons of the mammalian nervous system. Specifically these ion signals are needed to coordinate pollen tube growth and function required for fertilization. The results will not only contribute to predicting and manipulating cellular behavior leading to seed production, with potential agricultural impacts, but also to discovering new principles by which electric signals can define cell shape, guidance and communication extending beyond plant cells. This investigation will entail the development and integration of different STEM areas, including cell biology, genetics, computational methods and mathematical modeling. A data analysis pipeline and novel algorithms developed from the research will be made publicly available in R, an open-source statistical programming language, allowing analysis of complex oscillations and cell growth imaging. Educational and societal impacts include professional development of two postdoctoral researchers, undergraduate student training, and mentoring of local high school students. In addition, a number of outreach and educational activities are expected outcomes of the project, where the results and original approaches appealing to broader interests will be presented to a wide variety of audiences.Fertilization in higher plants requires the male gametophyte (pollen tubes) to grow into the female tissues and locate available ovules, finally bursting to deliver the sperm cells. Pollen tubes are highly polarized cells and in some species have the fastest cellular growth rates known in nature. This vigorous growth is sustained by specific spatial and temporal choreographies, often involving stable oscillations, of intracellular ion concentrations focused at the tip, which in turn are generated by extracellular ion fluxes. The main hypothesis to be tested in this project poses the existence of an ion-based central pacemaker responsible for minute-range oscillations in pollen tubes, which (1) are generated by a negative feedback loop between channel activity and membrane potential, (2) coordinate macroscopic processes at the cellular level (e.g. cell polarity, apical growth, guidance), (3) are involved in cell-cell competition/cooperation between growing pollen tubes and (4) impact cell-cell communication with the female gametophyte. The first goal is to characterize oscillations in all parameters using custom-made electrophysiology tools and live imaging with genetically encoded probes (Ca2+, H+, Cl- and membrane potential). These will allow comparison between signatures of different species/ ecotypes and single and multiple mutants of gene families coding for channels and transporters in Arabidopsis. The features of the oscillations will be determined with data-analysis tools developed for the project, allowing the formulation of mathematical models. Specific predictions will then be derived from differential equation models in varying levels of detail, whereas experimental validation will be achieved by testing the predictions with mutations, pharmacology and in vivo fertilization protocols, among others.
花粉管顶端的离子起搏器:顶端生长、引导和细胞间通讯的机制和功能该项目将研究花粉管内产生的离子和电信号的作用,花粉管是一种高度特化的细胞,参与开花植物的繁殖。这些细胞是顶端生长细胞的代表,除了花粉管,还包括真菌菌丝和哺乳动物神经系统发育中的神经元。具体地说,这些离子信号是协调花粉管生长和受精所需功能所必需的。这些结果不仅有助于预测和操纵导致种子生产的细胞行为,具有潜在的农业影响,而且还有助于发现电信号可以定义细胞形状,指导和超越植物细胞的通信的新原理。这项研究将涉及不同STEM领域的开发和整合,包括细胞生物学,遗传学,计算方法和数学建模。从研究中开发的数据分析管道和新算法将在R中公开,R是一种开源统计编程语言,可以分析复杂的振荡和细胞生长成像。教育和社会影响包括两名博士后研究人员的专业发展、本科生培训以及当地高中生的指导。此外,该项目还将开展一些推广和教育活动,向广大受众介绍吸引广泛兴趣的成果和原创方法。高等植物的受精需要雄配子体(花粉管)长入雌性组织,找到可用的胚珠,最后破裂产生精细胞。花粉管是高度极化的细胞,在某些物种中具有自然界中已知的最快的细胞生长速率。这种旺盛的增长是由特定的空间和时间编排,往往涉及稳定的振荡,细胞内离子浓度集中在尖端,这反过来又产生的细胞外离子通量。本研究的主要假设是:在花粉管中存在一个离子型的中央起搏器,负责细胞内的微程振荡,它(1)是由通道活性和膜电位之间的负反馈回路产生的,(2)在细胞水平上协调宏观过程(例如细胞极性、顶端生长、引导),(3)参与生长中的花粉管之间的细胞-细胞竞争/合作,以及(4)影响与雌配子体的细胞-细胞通讯。第一个目标是使用定制的电生理学工具和带有基因编码探针(Ca 2+,H+,Cl-和膜电位)的实时成像来表征所有参数的振荡。这些将允许不同物种/生态型的签名之间的比较和单个和多个突变体的基因家族编码的通道和转运蛋白在拟南芥。将利用为该项目开发的数据分析工具来确定振荡的特征,从而可以制定数学模型。具体的预测,然后将来自微分方程模型在不同的细节水平,而实验验证将通过测试的预测与突变,药理学和体内受精协议,等等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Feijo其他文献

Molecular Evolution of Plant Glutamate Receptors
  • DOI:
    10.1016/j.bpj.2019.11.3179
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Alex A. Simon;Juan Barbosa-Caro;Jose Feijo;Erwan Michard
  • 通讯作者:
    Erwan Michard

Jose Feijo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Feijo', 18)}}的其他基金

Ion signaling oscillatory patterns as integrators of chemotropic responses in pollen tubes
离子信号振荡模式作为花粉管趋化反应的积分器
  • 批准号:
    1930165
  • 财政年份:
    2019
  • 资助金额:
    $ 86.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A novel cell-based platform to study human circadian disorders
研究人类昼夜节律紊乱的新型细胞平台
  • 批准号:
    10736091
  • 财政年份:
    2023
  • 资助金额:
    $ 86.3万
  • 项目类别:
Reestablishing Sleep and Circadian Alignment in Medically Critically Ill Patients via a Mechanistic Randomized Controlled Trial of an ICU Sleep Chronobundle (ReAlign-ICU)
通过 ICU 睡眠时间束的机械随机对照试验 (ReAlign-ICU) 重建重症患者的睡眠和昼夜节律一致性
  • 批准号:
    10586548
  • 财政年份:
    2023
  • 资助金额:
    $ 86.3万
  • 项目类别:
Enhancing Precision Sleep Medicine in traumatic Brain Injury: Examining the feasibility of Home-Based Measurement of Circadian Timing
加强创伤性脑损伤的精准睡眠医学:检验家庭昼夜节律测量的可行性
  • 批准号:
    10700406
  • 财政年份:
    2023
  • 资助金额:
    $ 86.3万
  • 项目类别:
Effect of temporal distribution of macronutrient intake on metabolism
宏量营养素摄入时间分布对代谢的影响
  • 批准号:
    10657967
  • 财政年份:
    2023
  • 资助金额:
    $ 86.3万
  • 项目类别:
Uncovering the Origin and Mechanisms of Ultradian Rhythms in the Drosophila Brain
揭示果蝇大脑超电节律的起源和机制
  • 批准号:
    10654092
  • 财政年份:
    2023
  • 资助金额:
    $ 86.3万
  • 项目类别:
Coupling regional brain tissues with tissue chips
将区域脑组织与组织芯片耦合
  • 批准号:
    10631165
  • 财政年份:
    2022
  • 资助金额:
    $ 86.3万
  • 项目类别:
Assessment of mobile application-delivered lighting interventions for reducing circadian disruption in shift workers
评估移动应用程序提供的照明干预措施,以减少轮班工人的昼夜节律紊乱
  • 批准号:
    10384670
  • 财政年份:
    2022
  • 资助金额:
    $ 86.3万
  • 项目类别:
Development of a precision medicine platform for circadian based therapeutics in pancreatic cancer
开发基于昼夜节律的胰腺癌精准医学平台
  • 批准号:
    10707929
  • 财政年份:
    2022
  • 资助金额:
    $ 86.3万
  • 项目类别:
Development of a precision medicine platform for circadian based therapeutics in pancreatic cancer
开发基于昼夜节律的胰腺癌精准医学平台
  • 批准号:
    10477631
  • 财政年份:
    2022
  • 资助金额:
    $ 86.3万
  • 项目类别:
Diurnal Experimental Models to Investigate Neural Mechanisms of Sleep Disturbance in Smith-Magenis Syndrome
研究史密斯-马吉尼斯综合征睡眠障碍神经机制的昼夜实验模型
  • 批准号:
    10359869
  • 财政年份:
    2021
  • 资助金额:
    $ 86.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了