Entropic Springs in Tandem Repeat Proteins

串联重复蛋白中的熵泉

基本信息

  • 批准号:
    1616854
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This project aims to understand the physical and chemical principles that govern the function of a large class of biologically important proteins, called "tandem repeat proteins". In particular, the research focuses on understanding the relationship between tandem repeat protein structure in a protein found in muscle fibers and their ability to transduce force. The research involves a powerful combination of experimental and computational techniques, carried out by scientists at two University of Minnesota campuses. Its success will have impact on the understanding of force transduction in biological systems and establish a new approach to solving previously intractable problems in the biological sciences. It will provide valuable training for both undergraduate and graduate students, who will carry out most of the research. More broadly, this research will enhance educational programs at both campuses, and it will enrich an established regional educational program in this field, in collaboration with the Biophysical Society.This research focuses on proteins containing tandem repeats that include intrinsically disordered regions. Dystrophin serves as the model protein for this study. The central hypothesis is that disorder plays a critical role in the energetics and mechanics of these proteins. Therefore, the project combines experimental and computational tools that are optimal for probing disorder-to-order transitions in proteins. The first aim combines several high-resolution calorimetric techniques with computational molecular dynamics simulations to test the hypothesis that energy dissipation in this system involves entropic springs. The second aim employs electron paramagnetic resonance (EPR), fluorescence, and nuclear magnetic resonance (NMR) techniques that are designed to quantify dynamic disorder in proteins. This aim tests the hypothesis that increasing the number of tandem repeats increases protein dynamics and decreases stability. The third aim probes the role of water dynamics in these processes, using Overhauser dynamic nuclear polarization, which combines the principles of NMR and EPR. The overall goal is to advance understanding of the coupling between energetics, structural dynamics, and mechanics in these systems. While this project focuses on dystrophin, the principles and techniques established here will impact the entire field of tandem-repeat proteins, which are involved in numerous neuromuscular functions.
该项目旨在了解控制一大类生物学重要蛋白质(称为“串联重复蛋白质”)功能的物理和化学原理。 特别是,研究重点是了解肌肉纤维中发现的蛋白质中的串联重复蛋白质结构与它们的反作用力能力之间的关系。 这项研究涉及实验和计算技术的强大组合,由明尼苏达大学两个校区的科学家进行。它的成功将对理解生物系统中的力传递产生影响,并为解决生物科学中以前难以解决的问题建立新的方法。它将为本科生和研究生提供宝贵的培训,他们将进行大部分的研究。更广泛地说,这项研究将加强在两个校区的教育计划,它将丰富一个既定的区域教育计划在这一领域,与生物物理学会合作。这项研究的重点是蛋白质含有串联重复序列,包括内在无序区域。肌营养不良蛋白作为本研究的模型蛋白。 核心假设是,无序在这些蛋白质的能量学和力学中起着关键作用。因此,该项目结合了实验和计算工具,这些工具是探测蛋白质中无序到有序转变的最佳工具。 第一个目标结合了几个高分辨率的量热技术与计算分子动力学模拟测试的假设,在这个系统中的能量耗散涉及熵弹簧。 第二个目标采用电子顺磁共振(EPR),荧光和核磁共振(NMR)技术,旨在量化蛋白质中的动态无序。 这一目的检验了增加串联重复序列的数量会增加蛋白质动力学并降低稳定性的假设。第三个目标利用结合了核磁共振和电子顺磁共振原理的奥弗豪瑟动态核极化来探讨水动力学在这些过程中的作用。 总的目标是推进理解的能量,结构动力学和力学之间的耦合在这些系统中。 虽然这个项目的重点是肌营养不良蛋白,但这里建立的原则和技术将影响整个串联重复蛋白领域,这些蛋白参与许多神经肌肉功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Hinderliter其他文献

Exploring the Structural Properties of Synaptotagmin's Intrinsically Disordered Region
  • DOI:
    10.1016/j.bpj.2018.11.1113
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Michael E. Fealey;Anne Hinderliter;David D. Thomas
  • 通讯作者:
    David D. Thomas
Diminished Cooperativity: Comparing Linker Lengths in Synaptotagmin I C2A Domain
  • DOI:
    10.1016/j.bpj.2009.12.1326
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jesse R. Murphy;Kristofer J. Knutson;Jacob W. Gauer;R. Bryan Sutton;Anne Hinderliter
  • 通讯作者:
    Anne Hinderliter
Structure and Mutation Analysis of the C2A Domain of Human Dysferlin Provides a Thermodynamic Basis for Limb-Girdle Muscular Dystrophy
  • DOI:
    10.1016/j.bpj.2010.12.2432
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Kerry L. Fuson;Nathan Quisenberry;Thomas Walz;Danijela Dukovski;Anne Hinderliter;R. Bryan Sutton
  • 通讯作者:
    R. Bryan Sutton
Maintenance Cognition Stimulus Therapy: A Survey Paper
维持认知刺激疗法:调查论文
Conformational Flexibility in Membrane Binding Proteins: Synaptotagmin I C2A
  • DOI:
    10.1016/j.bpj.2009.12.1479
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jacob W. Gauer;Jesse Murphy;Kristofer Knutson;R. Bryan Sutton;Greg Gillispie;Anne Hinderliter
  • 通讯作者:
    Anne Hinderliter

Anne Hinderliter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Hinderliter', 18)}}的其他基金

CAREER: Studying Weak Interactions in Biological Systems, Forming Strong Interactions Between Students
职业:研究生物系统中的弱相互作用,在学生之间形成强相互作用
  • 批准号:
    0845676
  • 财政年份:
    2009
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant

相似海外基金

PurSUiT: Uncovering bacterial and archaeal diversity in Great Basin hot springs
追求:揭示大盆地温泉中细菌和古菌的多样性
  • 批准号:
    2241193
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Aston University and Protaform Springs & Pressings Limited KTP22_23R5
阿斯顿大学和 Protaform Springs
  • 批准号:
    10064206
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Knowledge Transfer Partnership
A New Scientific Approach to Forecast Phreatic Eruptions by Continuously Monitoring CO2/CH4 Ratios in the Hot Springs of Active Volcanoes
通过持续监测活火山温泉中的 CO2/CH4 比率来预测潜水喷发的新科学方法
  • 批准号:
    576225-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Conference: Participant Support for the 2023 Biomedical Engineering Society - Cellular and Molecular Bioengineering Conference; Palm Springs, California; 2-6 January 2023
会议:2023年生物医学工程学会-细胞与分子生物工程会议参会支持;
  • 批准号:
    2234130
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Radon and geochemistry characterizaiton of Alberta springs and groundwater sources
艾伯塔省泉水和地下水源的氡气和地球化学特征
  • 批准号:
    574728-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Impact of hot-springs and climate swings on lake habitats of early hominins in East Africa
温泉和气候波动对东非早期人类湖泊栖息地的影响
  • 批准号:
    574313-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Studying molecular and isotopic biosignatures of life at serpentine-hosted springs
研究蛇纹石泉水中生命的分子和同位素生物特征
  • 批准号:
    561822-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Support for Trainees and Independent Junior Investigators at BMES Cellular and Molecular Bioengineering Conference 2021; Palm Springs, California; 3-7 January 2021
为 2021 年 BMES 细胞和分子生物工程会议的学员和独立初级研究员提供支持;
  • 批准号:
    2031803
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Mantle fluid contribution to springs along the Denali Fault System: Constraints on the crustal scale nature of the main strand and splays
EAGER:合作研究:地幔流体对德纳里断层系统沿线泉水的贡献:对主链和斜张地壳尺度性质的限制
  • 批准号:
    2016336
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019323
  • 财政年份:
    2020
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了