Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems

合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学

基本信息

  • 批准号:
    2019323
  • 负责人:
  • 金额:
    $ 74.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Movement in biology is most often associated with motor-like mechanisms, such as muscle contractions in animals or hydraulics in plants. However, organisms have another option for generating movement: they can use motor-like mechanisms to load energy into elastic structures, such that pre-loaded, rubber band-like elastic structures generate the movement, instead of motors. Latch-mediated spring actuation generates movement largely or exclusively using stored elastic energy and incorporates latches to mediate energy release, much like controlled release of a coiled spring. This research examines how the size of an organism may determine whether movement is driven by stored elastic energy or direct motor action. Addressing this topic will improve understanding of fundamental physical limits on biological systems and how those limits influence development and evolution. Biological latch-mediated spring actuation generates among the fastest movements ever recorded, which exceed the current capabilities of human engineering to produce extremely fast movements in small, reusable devices. The discoveries from this research can help develop novel engineering devices and materials. This interdisciplinary team of research labs spans biology, physics, and materials science, and will train undergraduate, graduate, and postdoctoral researchers across four colleges and universities. The research activities will engage the broader public through a Research Experience for Teachers program each summer, alongside expansion of the Muser software program, which helps diverse undergraduates access research experiences in an equitable and transparent way. Latch-mediated spring actuation uses materials, not motors, to generate extremely fast movement in small systems. Energy is loaded into materials prior to movement and latches control loading and release of energy. This research examines the transitions between motor-driven and spring-driven movement within and across organisms. Across growth and development within species, experiments and modeling will test how mantis shrimp (Stomatopoda) maintain their mechanical capabilities and exhibit transitions between motor- and spring-driven movement across eight orders of magnitude of accelerated mass - a key predictor of the physics-based transition between effective motor- and spring-driven movement in any system. Across mantis shrimp species, variation in spring and latch components will be analyzed through statistical comparisons of the tempo (rate of evolutionary change) and mode (pattern of evolutionary change) to establish the key biomechanical factors limiting and promoting evolutionary diversification. Across the tree of life, the influence of accelerated mass and materials on origins and diversification will be tested using phylogenetic comparative analyses. Variation, transitions, and tuning of these mechanisms are informative for engineers designing small, fast, re-usable mechanisms at these extreme spatial and temporal scales. Undergraduates, graduate students, and a postdoctoral researcher will receive interdisciplinary training across the four labs. A Research Experience for Teachers program will provide interdisciplinary research experience and course development centered on these inherently engaging systems. The researchers will use, promote, and develop an open access software platform called Muser which is designed to enhance access and equity for undergraduate research experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物学中的运动通常与运动机制有关,例如动物的肌肉收缩或植物的水力学。然而,生物体有另一种产生运动的选择:它们可以使用类似马达的机制将能量加载到弹性结构中,这样,预先加载的橡皮筋状弹性结构就可以产生运动,而不是马达。闭锁介导的弹簧驱动主要或完全利用储存的弹性能量产生运动,并结合闭锁来调节能量释放,很像螺旋弹簧的可控释放。这项研究探讨了有机体的大小如何决定运动是由储存的弹性能量驱动还是由直接运动驱动。解决这个问题将提高对生物系统的基本物理限制以及这些限制如何影响发展和进化的理解。生物锁存介导的弹簧驱动产生了有史以来最快的运动,这超过了目前人类工程在小型可重复使用设备中产生极快运动的能力。这项研究的发现可以帮助开发新的工程设备和材料。这个跨学科的研究实验室团队横跨生物学、物理学和材料科学,并将在四所学院和大学培养本科生、研究生和博士后研究人员。研究活动将通过每年夏天的教师研究体验项目吸引更广泛的公众,同时扩展Muser软件项目,帮助不同的本科生以公平和透明的方式获得研究经验。闭锁介导的弹簧驱动使用材料,而不是电机,在小型系统中产生极快的运动。能量在移动之前就被装载到材料中,闩锁控制能量的装载和释放。这项研究考察了有机体内部和跨有机体的运动在电机驱动和弹簧驱动之间的过渡。在物种的生长和发育过程中,实验和建模将测试螳螂虾(口足类)如何保持其机械能力,并在加速质量的8个数量级上表现出运动和弹簧驱动运动之间的转变——这是任何系统中有效运动和弹簧驱动运动之间基于物理的转变的关键预测指标。通过对不同种类螳螂虾的进化速率和进化模式进行统计比较,分析其春季和闩锁组分的变化,以确定限制和促进进化多样化的关键生物力学因素。在整个生命之树上,将使用系统发育比较分析来测试加速质量和材料对起源和多样化的影响。这些机制的变化、转换和调整为工程师在这些极端的空间和时间尺度上设计小型、快速、可重用的机制提供了信息。本科生、研究生和博士后研究员将在四个实验室接受跨学科培训。教师研究经验计划将提供跨学科的研究经验和课程开发,以这些固有的引人入胜的系统为中心。研究人员将使用、推广和开发一个名为Muser的开放获取软件平台,该平台旨在提高本科生研究经验的获取和公平性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing elastic mechanisms: ultrafast motion and cavitation emerge at the millimeter scale in juvenile snapping shrimp
发展弹性机制:幼年鳄虾中出现毫米级的超快运动和空化
  • DOI:
    10.1242/jeb.244645
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Harrison, Jacob S.;Patek, S. N.
  • 通讯作者:
    Patek, S. N.
Elastic pinch biomechanisms can yield consistent launch speeds regardless of projectile mass
Weapon performance and contest assessment strategies of the cavitating snaps in snapping shrimp
  • DOI:
    10.1111/1365-2435.14190
  • 发表时间:
    2022-11-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Dinh, Jason P.;Patek, S. N.
  • 通讯作者:
    Patek, S. N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

S. Patek其他文献

In Silico Preclinical Trials: Methodology and Engineering Guide to Closed-Loop Control in Type 1 Diabetes Mellitus
In Silico 临床前试验:1 型糖尿病闭环控制的方法学和工程指南
  • DOI:
    10.1177/193229680900300207
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    5
  • 作者:
    S. Patek;B. Bequette;M. Breton;B. Buckingham;Eyal Dassau;F. Doyle;J. Lum;L. Magni;Howard C. Zisser
  • 通讯作者:
    Howard C. Zisser
Acoustic ecology of the California mantis shrimp (Hemisquilla californiensis).
加州螳螂虾(Hemisquilla californiensis)的声学生态学。
  • DOI:
    10.1007/978-1-4419-7311-5_37
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Staaterman;C. Clark;A. Gallagher;T. Claverie;M. S. de Vries;S. Patek
  • 通讯作者:
    S. Patek
Multiple-signal artificial pancreas systems
多信号人工胰腺系统
Stochastic and shortest path games: theory and algorithms
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Patek
  • 通讯作者:
    S. Patek
The Contribution of Physical Activity in Blood Glucose Concentration for People with Type 1 Diabetes
体力活动对 1 型糖尿病患者血糖浓度的影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitri Boiroux;J. B. Jørgensen;S. Patek;M. Breton
  • 通讯作者:
    M. Breton

S. Patek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('S. Patek', 18)}}的其他基金

CAREER: The evolutionary mechanics of rapid movement
职业:快速运动的进化机制
  • 批准号:
    1439850
  • 财政年份:
    2013
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Continuing Grant
CAREER: The evolutionary mechanics of rapid movement
职业:快速运动的进化机制
  • 批准号:
    1149748
  • 财政年份:
    2012
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Continuing Grant
Comparative Mechanics of Rapid Predatory Movements
快速掠夺运动的比较机制
  • 批准号:
    1014573
  • 财政年份:
    2009
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Comparative Mechanics of Rapid Predatory Movements
快速掠夺运动的比较机制
  • 批准号:
    0641716
  • 财政年份:
    2007
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Moving mountains: timing and emplacement of the Marysvale gravity slide complex
合作研究:移动山脉:马里斯维尔重力滑梯综合体的时间和位置
  • 批准号:
    2412838
  • 财政年份:
    2023
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing turbidity currents: moving sources, polydispersity and aggregation
合作研究:推进浊流:移动源、多分散性和聚集
  • 批准号:
    2139277
  • 财政年份:
    2022
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing turbidity currents: moving sources, polydispersity and aggregation
合作研究:推进浊流:移动源、多分散性和聚集
  • 批准号:
    2138583
  • 财政年份:
    2022
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2227080
  • 财政年份:
    2022
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2108072
  • 财政年份:
    2021
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving beyond access, increasing teacher knowledge to teach rigorous equity-focused high school computing
协作研究:超越获取途径,增加教师知识,教授严格的以公平为中心的高中计算
  • 批准号:
    2122314
  • 财政年份:
    2021
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving Beyond the Margins: Modeling Water Availability and Habitable Terrestrial Ecosystems in the Polar Desert of the McMurdo Dry Valleys
合作研究:超越边缘:麦克默多干谷极地沙漠的水资源可用性和宜居陆地生态系统建模
  • 批准号:
    2044924
  • 财政年份:
    2021
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving mountains: timing and emplacement of the Marysvale gravity slide complex
合作研究:移动山脉:马里斯维尔重力滑梯综合体的时间和位置
  • 批准号:
    2113155
  • 财政年份:
    2021
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving Beyond the Margins: Modeling Water Availability and Habitable Terrestrial Ecosystems in the Polar Desert of the McMurdo Dry Valleys
合作研究:超越边缘:麦克默多干谷极地沙漠的水资源可用性和宜居陆地生态系统建模
  • 批准号:
    2045874
  • 财政年份:
    2021
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving Beyond the Margins: Modeling Water Availability and Habitable Terrestrial Ecosystems in the Polar Desert of the McMurdo Dry Valleys
合作研究:超越边缘:麦克默多干谷极地沙漠的水资源可用性和宜居陆地生态系统建模
  • 批准号:
    2046260
  • 财政年份:
    2021
  • 资助金额:
    $ 74.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了