Multiscale Computation in Kinetic Theory

动力学理论中的多尺度计算

基本信息

  • 批准号:
    1619778
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Physical systems are modeled at different scales and to different approximations with different equations. The Schrodinger equation at the quantum level models the molecular and atomic scale. Newton's laws in classical mechanics model the macroscopic scale. The Boltzmann equation applies at the statistical level, where systems of many particles are studied, and the Navier-Stokes equation and others model distributed systems such as fluids in the continuum regime. A central question in applied mathematics and physics is to understand the relationships between the different models, and many tools (both analytical and numerical) have been developed for this task through the years. However, most of them idealize the systems under study and cannot tackle practical problems that have emerged in the study of complicated systems in chemistry, physics, and engineering. This project focuses on two longstanding challenges concerning these connections: the characterization of quantum information in the classical regime when chemical reactions are present, and the coupling between the statistical and the fluid description. The project aims to develop improved methods for the modeling of multiscale systems. Despite their fundamental importance in physics and engineering, effective mathematical analysis and computational techniques for multiscale problems in kinetic theory have remained rather elusive. The multiple scales inherent in many physical systems have posed notorious computational challenges. This project concerns development of multiscale numerical methods in kinetic theory, including numerical capture of the hydrodynamic limit of Boltzmann-type equations and the semi-classical limit of the Schrodinger equation. Both have long been regarded as fundamental problems in kinetic theory. More specifically, the project focuses on capturing the non-adiabatic transition in the classical regime derived from quantum mechanics, and boundary layer effects that connect the fluid description with the statistical mechanical description. Both problems emerge in transition regimes, the multi-physics phenomena can be captured by none of currently available mathematical treatments, and the computation is far from being efficient. The project aims to develop and analyze efficient computational tools for these problems, focusing on treatment of boundary layers and interfaces and design of asymptotic-preserving schemes. Besides leading to improved understanding of physical systems of these types, it is expected that the new tools under development could inspire treatments of similar problems emerging in other areas, for example, hyperbolic type problems with random media.
物理系统以不同的尺度和不同的近似用不同的方程建模。量子水平上的薛定谔方程模拟了分子和原子尺度。经典力学中的牛顿定律是宏观尺度的模型。玻尔兹曼方程适用于统计水平,在统计水平上研究许多粒子的系统,而纳维-斯托克斯方程和其他模型分布系统,如连续统状态下的流体。应用数学和物理学的一个核心问题是理解不同模型之间的关系,多年来已经开发了许多工具(分析和数值)来完成这项任务。然而,它们中的大多数将所研究的系统理想化,而不能解决在化学、物理和工程等复杂系统研究中出现的实际问题。该项目侧重于两个长期存在的挑战:当化学反应存在时,经典状态下量子信息的表征,以及统计和流体描述之间的耦合。该项目旨在开发改进的多尺度系统建模方法。尽管它们在物理和工程中具有重要的基础意义,但动力学理论中多尺度问题的有效数学分析和计算技术仍然相当难以捉摸。许多物理系统中固有的多尺度已经带来了臭名昭著的计算挑战。本项目涉及动力学理论中多尺度数值方法的发展,包括玻尔兹曼型方程的水动力极限和薛定谔方程的半经典极限的数值捕获。长期以来,这两个问题都被视为动力学理论的基本问题。更具体地说,该项目侧重于捕捉由量子力学导出的经典状态中的非绝热转变,以及将流体描述与统计力学描述联系起来的边界层效应。这两个问题都出现在过渡状态中,多物理场现象无法被目前可用的数学处理所捕获,而且计算效率还远远不够。该项目旨在为这些问题开发和分析有效的计算工具,重点是边界层和界面的处理以及渐近保持格式的设计。除了提高对这些类型的物理系统的理解外,预计正在开发的新工具可以启发对其他领域出现的类似问题的处理,例如随机介质的双曲型问题。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse Problems for the Stationary Transport Equation in the Diffusion Scaling
扩散标度中稳态输运方程的反演问题
  • DOI:
    10.1137/18m1207582
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Lai, Ru-Yu;Li, Qin;Uhlmann, Gunther
  • 通讯作者:
    Uhlmann, Gunther
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qin Li其他文献

Ku80 negatively regulates the expression of OCT4 via competitive binding to SALL4 and promoting lysosomal degradation of OCT4
Ku80通过与SALL4竞争性结合并促进OCT4的溶酶体降解来负调节OCT4的表达
  • DOI:
    10.1016/j.biocel.2019.105664
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Bixing Zhao;Xiaoyuan Zheng;Xionghong Tan;Kun Ke;Fei Wang;Yingchao Wang;Xiaohua Xing;Cuilin Zhang;Ping Hu;Shubing Lan;Qin Li;Aimin Huang;Xiaolong Liu
  • 通讯作者:
    Xiaolong Liu
Complete assignments of 1H and 13C NMR spectral data for a novel diterpenoid from Semiaquilegia adoxoides
来自 Semiaquilegia adoxoides 的新型二萜化合物的 1H 和 13C NMR 光谱数据的完整分配
  • DOI:
    10.1002/mrc.1812
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Feng Niu;Zheng Cui;Qin Li;Hai;Yong;L. Qiao;P. Tu
  • 通讯作者:
    P. Tu
Irregular virulence genes expression of Vibrio parahaemolyticus inshrimp or seawater matrix
副溶血弧菌毒力基因在虾或海水基质中的不规则表达
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aijing Zhao;Haiquan Liu;Wenshuo Sun;Qin Li;Ying;Yong Zhao
  • 通讯作者:
    Yong Zhao
Separation Topology of Microramp Vortex Generator Controlled Flow at Mach Number 2.5
马赫数 2.5 时微斜坡涡流发生器控制流的分离拓扑
  • DOI:
    10.2514/1.c033280
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Qin Li;Yonghua Yan;Chaoqun Liu;Frank Lu
  • 通讯作者:
    Frank Lu
Numerical study of surface plasmon polariton coupling on the metal-insulator hybrid gratings
金属-绝缘体混合光栅表面等离子体激元耦合的数值研究
  • DOI:
    10.7498/aps.62.167301
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Chen Yong-Yi;Qin Li;Tong Cun-Zhu;Wang Li-Jun
  • 通讯作者:
    Wang Li-Jun

Qin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qin Li', 18)}}的其他基金

Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
  • 批准号:
    2308440
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Applicable Kinetic Computation with Boundaries and Rough Media
职业:边界和粗糙介质的适用动力学计算
  • 批准号:
    1750488
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Multiscale Computational Methods for Semiclassical Schroedinger Equations with Non-Adiabatic Effects
具有非绝热效应的半经典薛定谔方程的多尺度计算方法
  • 批准号:
    1522184
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
  • 批准号:
    1107291
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
  • 批准号:
    81903416
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
  • 批准号:
    2400056
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
  • 批准号:
    2339193
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
  • 批准号:
    DE240100846
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Early Career Researcher Award
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036867/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
  • 批准号:
    2340095
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了