CAREER: Applicable Kinetic Computation with Boundaries and Rough Media
职业:边界和粗糙介质的适用动力学计算
基本信息
- 批准号:1750488
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kinetic theory describes the dynamics of a large number of particles in a statistical manner. The theory is central to statistical mechanics and naturally connects the micro-world described by Newton's law and the macro-world described by the Navier-Stokes equations. Its applications arise from aerospace engineering, mechanical engineering, nuclear engineering, and atmospheric science. In all these engineering fields, rarified gas, photons, neutrons, and many other types of particles are modeled by kinetic equations. This research project aims to advance kinetic theory in both abstract and practical ways, developing novel theory that is widely applicable to systems of central interest in science and engineering. This research project concentrates on three main questions in kinetic theory: 1. theoretically and numerically understanding particles' interactions with boundaries/interfaces, with the focus placed on understanding the boundary layer behavior; 2. analytically and numerically relaxing homogeneity assumptions for the media, with both highly oscillatory and rough media considered; 3. studying uncertainties and sensitivities of the problem in both forward and backward manner, that is, tracing the propagation of perturbations in the forward setting to understand how error gets enlarged in the associated inverse problem. Due to the multi-scale multi-physics nature of kinetic theory, the theoretical results will largely be obtained from performing asymptotic analysis on the formal level and regularity theory on the rigorous level. To tackle the challenges in computation, the PI intends to incorporate solution structure given by partial-differential-equation analysis, and to explore randomized solvers that have seen success in data science and compressed sensing. Throughout the project, the PI intends to collaborate with engineers to ensure the techniques under development are truly applicable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学理论以统计的方式描述大量粒子的动力学。该理论是统计力学的核心,自然地将牛顿定律描述的微观世界和纳维-斯托克斯方程描述的宏观世界联系起来。它的应用来自航空航天工程、机械工程、核工程和大气科学。在所有这些工程领域中,稀薄气体、光子、中子和许多其他类型的粒子都是通过动力学方程来建模的。该研究项目旨在以抽象和实用的方式推进动力学理论,开发广泛适用于科学和工程中核心利益系统的新理论。本课题主要研究动力学理论中的三个主要问题:1.从理论上和数值上理解粒子与边界/界面的相互作用,重点放在理解边界层行为上; 2.分析和数值放松均匀性假设的介质,与高度振荡和粗糙的介质考虑; 3.以正向和反向方式研究问题的不确定性和敏感性,即跟踪正向设置中扰动的传播,以了解相关逆问题中误差如何扩大。由于动力学理论的多尺度多物理性质,理论结果将在很大程度上通过形式水平上的渐近分析和严格水平上的正则性理论来获得。为了应对计算方面的挑战,PI打算结合偏微分方程分析给出的解结构,并探索在数据科学和压缩感知领域取得成功的随机解算器。在整个项目中,PI打算与工程师合作,以确保正在开发的技术是真正适用的。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bridging and Improving Theoretical and Computational Electrical Impedance Tomography via Data Completion
通过数据补全桥接和改进理论和计算电阻抗断层扫描
- DOI:10.1137/21m141703x
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Bui-Thanh, Tan;Li, Qin;Zepeda-Nún͂ez, Leonardo
- 通讯作者:Zepeda-Nún͂ez, Leonardo
Applications of kinetic tools to inverse transport problems
动力学工具在逆输运问题中的应用
- DOI:10.1088/1361-6420/ab59b8
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Li, Qin;Sun, Weiran
- 通讯作者:Sun, Weiran
Structured Random Sketching for PDE Inverse Problems
PDE 反问题的结构化随机草图
- DOI:10.1137/20m1310497
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Chen, Ke;Li, Qin;Newton, Kit;Wright, Stephen J.
- 通讯作者:Wright, Stephen J.
Parameter Reconstruction for General Transport Equation
一般输运方程的参数重构
- DOI:10.1137/19m1265739
- 发表时间:2020
- 期刊:
- 影响因子:2
- 作者:Lai, Ru-Yu;Li, Qin
- 通讯作者:Li, Qin
Reconstruction of the Emission Coefficient in the Nonlinear Radiative Transfer Equation
非线性辐射传输方程中发射系数的重构
- DOI:10.1137/20m1348339
- 发表时间:2021
- 期刊:
- 影响因子:1.9
- 作者:Klingenberg, Christian;Lai, Ru-Yu;Li, Qin
- 通讯作者:Li, Qin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qin Li其他文献
Ku80 negatively regulates the expression of OCT4 via competitive binding to SALL4 and promoting lysosomal degradation of OCT4
Ku80通过与SALL4竞争性结合并促进OCT4的溶酶体降解来负调节OCT4的表达
- DOI:
10.1016/j.biocel.2019.105664 - 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
Bixing Zhao;Xiaoyuan Zheng;Xionghong Tan;Kun Ke;Fei Wang;Yingchao Wang;Xiaohua Xing;Cuilin Zhang;Ping Hu;Shubing Lan;Qin Li;Aimin Huang;Xiaolong Liu - 通讯作者:
Xiaolong Liu
Complete assignments of 1H and 13C NMR spectral data for a novel diterpenoid from Semiaquilegia adoxoides
来自 Semiaquilegia adoxoides 的新型二萜化合物的 1H 和 13C NMR 光谱数据的完整分配
- DOI:
10.1002/mrc.1812 - 发表时间:
2006 - 期刊:
- 影响因子:2
- 作者:
Feng Niu;Zheng Cui;Qin Li;Hai;Yong;L. Qiao;P. Tu - 通讯作者:
P. Tu
Irregular virulence genes expression of Vibrio parahaemolyticus inshrimp or seawater matrix
副溶血弧菌毒力基因在虾或海水基质中的不规则表达
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Aijing Zhao;Haiquan Liu;Wenshuo Sun;Qin Li;Ying;Yong Zhao - 通讯作者:
Yong Zhao
Separation Topology of Microramp Vortex Generator Controlled Flow at Mach Number 2.5
马赫数 2.5 时微斜坡涡流发生器控制流的分离拓扑
- DOI:
10.2514/1.c033280 - 发表时间:
2015-09 - 期刊:
- 影响因子:2.2
- 作者:
Qin Li;Yonghua Yan;Chaoqun Liu;Frank Lu - 通讯作者:
Frank Lu
Numerical study of surface plasmon polariton coupling on the metal-insulator hybrid gratings
金属-绝缘体混合光栅表面等离子体激元耦合的数值研究
- DOI:
10.7498/aps.62.167301 - 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
Chen Yong-Yi;Qin Li;Tong Cun-Zhu;Wang Li-Jun - 通讯作者:
Wang Li-Jun
Qin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qin Li', 18)}}的其他基金
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Multiscale Computation in Kinetic Theory
动力学理论中的多尺度计算
- 批准号:
1619778 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Multiscale Computational Methods for Semiclassical Schroedinger Equations with Non-Adiabatic Effects
具有非绝热效应的半经典薛定谔方程的多尺度计算方法
- 批准号:
1522184 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RNMS: Kinetic Description of Emerging Challenges in Multiscale Problems of Natural Sciences
合作研究:RNMS:自然科学多尺度问题中新挑战的动力学描述
- 批准号:
1107291 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
Cyclobutadiene Reloaded: A Generally Applicable Approach to Functionalised Four-Membered Heterocycles
重新装载环丁二烯:一种普遍适用的官能化四元杂环方法
- 批准号:
EP/Y022211/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Development of emergence simulator for complex adaptive systems applicable to life science, ecosystems, and social phenomena
开发适用于生命科学、生态系统和社会现象的复杂自适应系统的涌现模拟器
- 批准号:
23K04283 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Multi-disciplinary Applicable Learning Theory Guide Map
多学科适用学习理论指导图的开发
- 批准号:
23K12798 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of base-metal-catalyzed reactions applicable for new design of organic semiconductor materials
开发适用于有机半导体材料新设计的贱金属催化反应
- 批准号:
22KJ0667 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Dérivation et validation d'un outil de stratification du risque applicable en préhospitalier pour déterminer le risque qu'une personne âgée nécessite des soins d'urgence et/ou une hospitalisation après une chute
在住院前适用的风险分层的衍生和验证是确定风险人员的必要条件,是住院后紧急情况和住院治疗所必需的
- 批准号:
479568 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Operating Grants
Establishment of basic technology for the development of veterinary regenerative medicine products using clinically applicable canine iPS cells
建立利用临床适用的犬iPS细胞开发兽用再生医学产品的基础技术
- 批准号:
23H02388 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Universally Applicable Model Wavefunction Forms for Strong and Weak Electron Correlation in Quantum Chemistry
量子化学中强电子关联和弱电子关联的通用模型波函数形式
- 批准号:
RGPIN-2017-05566 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Development of oil film interferometry applicable to the internal flow of turbo machinery with backward flow and secondary flow
适用于倒流、二次流涡轮机械内部流动的油膜干涉测量技术的研制
- 批准号:
22K03908 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular flow compression intake using microstructured surface applicable to air breathing ion engine
适用于呼吸式离子发动机的微结构表面分子流压缩进气
- 批准号:
22K18859 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




