OP: COLLABORATIVE RESEARCH: Integrated Simulation of Non-homogeneous Thin-film Photovoltaic Devices
OP:协作研究:非均质薄膜光伏器件的集成模拟
基本信息
- 批准号:1619901
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solar cells are desirable as energy sources that neither use fossil fuels nor produce greenhouse gases. They must be designed to efficiently absorb sunlight and convert it to electricity. The solar cell needs to be sufficiently thick to absorb light across the solar spectrum. To reduce this thickness, and so reduce manufacturing cost, several layers of materials are used: first, to help light penetrate the solar cell, and then to trap it inside. Some of these layers are semiconductors in which electricity is generated, while others (for example, a periodically corrugated metallic back layer) may help absorption by trapping light near their surface. However, the amount of electricity generated by a solar cell does not just depend on absorption, but also on the transport of electrons within the layers of the solar cell. If the density of electrons decreases during transport, thereby trumping any gain in sunlight absorption, then a chosen light-management strategy will not be fruitful. The project team will develop an integrated pair of computer models that simultaneously predict the absorption of sunlight and the consequent electrical performance of the solar cell using modern techniques from numerical analysis. The codes will extend current simulation technology to allow for semiconductor layers with properties that vary from place to place and allow fully three-dimensional models of the device. Using their codes, the PIs will optimize device designs for best electricity generation. Definitive predictions will be provided about thin-film photovoltaic solar cells, thereby providing significant progress towards inexpensive and sustainable production of electricity. These codes will be made available to other photovoltaic researchers.The overall model of the thin-film photovoltaic solar cell will have a photonic submodel and an electrical submodel. In the photonic model, the quasi-periodic Maxwell's equations will be solved using edge finite elements. To improve flexibility, the PIs will analyze and implement a non-standard mortaring technique to take care of quasi-periodicity. Compatible electrical models will be analyzed and implemented using the Hybridizable Discontinuous Galerkin (HDG) method on hexahedral elements for the non-linear convection and diffusion problem governing drift and diffusion of electrical charge carriers. The HDG scheme will require a novel analysis to understand this non-linear convection-diffusion problem. Stability and convergence will be explored first for linear convection-diffusion problems, and the methodology will then be extended to an implicit-explicit time-stepping scheme for the drift-diffusion system. Besides a full 3D model, the PIs will develop a 2D model assuming translation invariance of the photovoltaic device in one transverse direction. The second step of the proposed research is to use the new simulation capability to design optimal nonhomogeneous thin-film photovoltaic solar cells via the Differential Evolution Algorithm. This will optimize for maximal photovoltaic electricity-generation efficiency. Additionally, domain and coefficient derivatives will be characterized and implemented to allow the computation of sensitivities and the use of gradient-based optimization. Detailed photonic-and-electrical modeling with doubly periodic back-reflectors and non-homogeneous light-absorbing layers will permit a major expansion of solar-cell design methodologies, besides yielding optimal designs for maximal photovoltaic electricity-generation efficiency.
太阳能电池作为既不使用化石燃料也不产生温室气体的能源是理想的。它们必须被设计成有效地吸收阳光并将其转化为电能。太阳能电池需要足够厚以吸收整个太阳光谱的光。为了减少这种厚度,从而降低制造成本,使用了几层材料:首先,帮助光线穿透太阳能电池,然后将其捕获在内部。这些层中的一些是半导体,其中产生电力,而其他层(例如,周期性波纹金属背层)可能通过捕获其表面附近的光来帮助吸收。然而,太阳能电池产生的电量不仅取决于吸收,还取决于太阳能电池层内电子的传输。如果电子密度在传输过程中下降,从而超过了阳光吸收的任何增益,那么所选择的光管理策略将不会有成效。该项目小组将开发一对集成的计算机模型,利用数值分析的现代技术,同时预测太阳能电池对阳光的吸收和随之而来的电气性能。这些代码将扩展当前的模拟技术,以允许半导体层的特性因地而异,并允许器件的完全三维模型。使用他们的代码,PI将优化设备设计,以获得最佳发电效果。将提供有关薄膜光伏太阳能电池的预测,从而为廉价和可持续的电力生产提供重大进展。这些程序将提供给其他光伏研究人员。薄膜光伏太阳能电池的整体模型将有一个光子子模型和一个电学子模型。在光子模型中,准周期麦克斯韦方程组将使用棱边有限元求解。为了提高灵活性,PI将分析和实施非标准砂浆技术,以照顾准周期性。兼容的电气模型将进行分析和实施的六面体元素的非线性对流和扩散问题的控制漂移和扩散的电荷载流子使用Hybridizable不连续伽辽金(HDG)方法。HDG方案将需要一个新的分析,以了解这个非线性对流扩散问题。首先将探讨线性对流扩散问题的稳定性和收敛性,然后将该方法扩展到漂移扩散系统的隐式-显式时间步进格式。除了完整的3D模型外,PI还将开发2D模型,假设光伏器件在一个横向方向上具有平移不变性。 本研究的第二步是利用新的模拟能力,通过差分进化算法设计最佳的非均匀薄膜光伏太阳能电池。这将优化最大的光伏发电效率。此外,域和系数导数将被表征和实现,以允许计算灵敏度和使用基于梯度的优化。详细的光子和电气建模与双周期背反射器和非均匀的光吸收层将允许一个主要的扩展太阳能电池的设计方法,除了产生最大的光伏发电效率的最佳设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akhlesh Lakhtakia其他文献
Dyakonov–Tamm waves guided by a phase–twist combination defect in a sculptured nematic thin film
- DOI:
10.1016/j.optcom.2010.08.042 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Muhammad Faryad;Akhlesh Lakhtakia - 通讯作者:
Akhlesh Lakhtakia
Fabrication of Polymeric Visual Decoys for the Male Emerald Ash Borer (Agrilus planipennis)
- DOI:
10.1016/s1672-6529(13)60207-3 - 发表时间:
2013-06-01 - 期刊:
- 影响因子:5.800
- 作者:
Drew P. Pulsifer;Akhlesh Lakhtakia;Mahesh S. Narkhede;Michael J. Domingue;Beverly G. Post;Jayant Kumar;Raúl J. Martín-Palma;Thomas C. Baker - 通讯作者:
Thomas C. Baker
Recommendations of India’s National Education Policy 2020 for higher education
- DOI:
10.1007/s43538-025-00386-2 - 发表时间:
2025-01-28 - 期刊:
- 影响因子:2.100
- 作者:
Raghavan R. Venkata;Prama Bhattacharya;Akhlesh Lakhtakia;Selvan T. Krishnasamy - 通讯作者:
Selvan T. Krishnasamy
Metal/dielectric/metal sandwich film for broadband reflection reduction
用于宽带反射降低的金属/介电/金属夹心膜
- DOI:
10.1038/srep01672 - 发表时间:
2013-04-17 - 期刊:
- 影响因子:3.900
- 作者:
Yi-Jun Jen;Akhlesh Lakhtakia;Meng-Jie Lin;Wei-Hao Wang;Huang-Ming Wu;Hung-Sheng Liao - 通讯作者:
Hung-Sheng Liao
An investigative report on the constructive relations of linear magnetoelectric media
- DOI:
10.1007/bf02096064 - 发表时间:
1994-08-01 - 期刊:
- 影响因子:2.500
- 作者:
Akhlesh Lakhtakia - 通讯作者:
Akhlesh Lakhtakia
Akhlesh Lakhtakia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akhlesh Lakhtakia', 18)}}的其他基金
IRES Track II: US-Taiwan ASIs for Science, Technology, and Manufacture of Future Display Devices and Systems
IRES Track II:美国-台湾 ASI,用于未来显示设备和系统的科学、技术和制造
- 批准号:
2154275 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Optoelectronic Optimization of Thin-Film Solar Cells with Light-Trapping Structures
合作研究:具有光捕获结构的薄膜太阳能电池的集成光电优化
- 批准号:
2011996 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER: Towards Simultaneous Optical Sensing of Multiple Analytes With a Multiple Surface-Plasmon-Polariton-Wave Platform
EAGER:利用多表面等离子极化波平台对多种分析物进行同步光学传感
- 批准号:
1106503 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127331 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114304 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1938702 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709601 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
- 批准号:
1710514 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
- 批准号:
1720291 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1720116 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709275 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant