Mathematical and Computational Studies in Poroelasticity
多孔弹性的数学和计算研究
基本信息
- 批准号:1619969
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will study mathematical models which describe the swelling and shrinking of fluid-saturated, elastic, porous media (elastic solids) and the interactions between the fluid and the elastic porous structures. The significance of the research is due to the fact that many natural substances, e.g., rocks, soils, and even biological tissues, as well as man-made materials such as foams, gels, concrete, and ceramics are such elastic porous media. Thus, research findings will be applicable in a multitude of areas (biomechanics, pharmacology, energy technology, geomechanics, geophysics, and materials science). The models developed can be used to describe various man-made materials and manufacturing processes. They can also be used to model the biomechanics of soft tissues and biological porous media, enabling the modeling and optimization of new therapies, development of new diagnostics tools, and advancing our understanding of human physiology. This research will also improve our capability to model, analyze, and assess the environmental impact of processes associated with hydraulic fracturing, wastewater injection, and carbon capture and storage, and activities associated with production of geothermal energy. Graduate and undergraduate students will be trained and will participate in the work. Research findings, and experience from it, will be incorporated into the graduate and undergraduate curricula.This research focuses on mathematical and computational issues arising in continuum models of poroelasticity and electroporoelasticity. These provide a unified and systematic treatment of various porous materials and processes which arise in diverse areas of science and engineering and a variety of applications. Additional physical phenomena, such as the electromechanical response of the medium, as well as chemical and/or thermal effects, may also be accounted for. Thus, poroelasticity, electroporoelasticity, or even electro-chemo-thermo-poroelasticity, are all complex coupled, multiphysics, multiscale, phenomena, where the swelling and shrinking of an elastic or viscoelastic deforming porous medium is coupled to the electromechanical (and/or the thermal, and chemical) response of the medium and saturating fluid. Poroelasticity also involves multiple scales; the micro-scale corresponding to the molecular scale, and the scale of continuum mechanics, the macro-scale. The PI will develop mathematical and computational tools and study, analytically and computationally, various mathematical problems arising in poroelasticity. Among the issues considered will be the well posedness of mathematical pde models and the derivation and analysis of efficient and accurate numerical algorithms for approximating solutions of these partial differential equations.
PI将研究描述流体饱和,弹性,多孔介质(弹性固体)的膨胀和收缩以及流体和弹性多孔结构之间的相互作用的数学模型。这项研究的重要性是由于许多天然物质,例如,岩石、土壤、甚至生物组织,以及人造材料如泡沫、凝胶、混凝土和陶瓷都是这种弹性多孔介质。因此,研究成果将适用于许多领域(生物力学,药理学,能源技术,地质力学,生物物理学和材料科学)。所开发的模型可用于描述各种人造材料和制造过程。它们还可用于模拟软组织和生物多孔介质的生物力学,从而实现新疗法的建模和优化,开发新的诊断工具,并促进我们对人体生理学的理解。这项研究还将提高我们建模,分析和评估与水力压裂,废水注入,碳捕获和储存以及与地热能生产相关的活动相关的过程对环境影响的能力。研究生和本科生将接受培训并参加工作。研究结果和经验,将纳入研究生和本科生courses.This研究集中在连续介质模型的孔隙弹性和电孔隙弹性所产生的数学和计算问题。这些提供了一个统一的和系统的处理各种多孔材料和过程中出现的不同领域的科学和工程和各种应用。还可以考虑其他物理现象,例如介质的机电响应以及化学和/或热效应。因此,多孔弹性,电多孔弹性,甚至电化学热多孔弹性,都是复杂的耦合,多物理,多尺度,现象,其中的膨胀和收缩的弹性或粘弹性变形多孔介质耦合到机电(和/或热和化学)的介质和饱和流体的响应。多孔弹性也涉及多个尺度;微观尺度对应于分子尺度,而连续介质力学的尺度是宏观尺度。PI将开发数学和计算工具,并研究,分析和计算,孔隙弹性中出现的各种数学问题。其中考虑的问题将是适定性的数学偏微分方程模型和推导和分析的有效和准确的数值算法近似解决这些偏微分方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amnon Meir其他文献
Amnon Meir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amnon Meir', 18)}}的其他基金
Eighteenth Southeastern - Atlantic Regional Conference on Differential Equations
第十八届东南大西洋地区微分方程会议
- 批准号:
9812541 - 财政年份:1998
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications
深度神经网络压缩和蒸馏方法的计算和数学研究及应用
- 批准号:
2151235 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
- 批准号:
1854434 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical and Computational Studies on Bose-Einstein Superfluid
玻色-爱因斯坦超流体的数学和计算研究
- 批准号:
1913293 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Modelling and Computational Simulation Studies of Flagellate Motility
鞭毛运动的数学建模和计算模拟研究
- 批准号:
1941986 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Studentship
CAREER: Mathematical Modeling and Computational Studies of Human Seizure Initiation and Spread
职业:人类癫痫发作和传播的数学建模和计算研究
- 批准号:
1451384 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Mathematical modeling and computational studies for proliferation kinetics of tumor growth with spatial-temporal dynamics
时空动力学肿瘤生长增殖动力学的数学建模和计算研究
- 批准号:
1308948 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Mathematical and Computational Studies of Interfaces and Defects
界面和缺陷的数学和计算研究
- 批准号:
1016073 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical and Computational Studies of Fuel Cell Dynamics
燃料电池动力学的数学和计算研究
- 批准号:
0308946 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Engineering Research Equipment: Workstations for Computational Studies in Large-Scale Simulation and Mathematical Programming Research
工程研究设备:大规模仿真和数学规划研究中的计算研究工作站
- 批准号:
9423929 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Commutative Algebra and Its Applications to Computational Algebra
数学科学:交换代数研究及其在计算代数中的应用
- 批准号:
9500786 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant