Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications

深度神经网络压缩和蒸馏方法的计算和数学研究及应用

基本信息

  • 批准号:
    2151235
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This project will develop efficient deep learning architectures for the deployment of artificial intelligence algorithms on resource limited platforms, such as mobile computing and the internet of things. High performance deep neural networks consume hundreds of billions of flops in computation and store hundreds of millions of parameters in memory. However, devices with limited resources with respect to both power and memory call for constructions of lightweight deep neural networks to maintain the performance level of their heavyweight counterparts. This project aims to develop an efficient search-based architecture compression method and a novel teacher-tutor-student (knowledge distillation) framework to extract a smart lightweight network (student) from a state-of-the-art heavyweight network (teacher) with the help of an intermediate network (tutor). Real world applications benefitting from the project include visual computing on mobile phone and autonomous driving, the delivery, monitor and rescue missions by the drone, and disease detection and diagnosis in mobile health. The project will train graduate students and enrich data science curriculum for a diverse body of undergraduate students in science and engineering at minority serving institutions. The project will study a dual-network cooperation method for the search-based architecture compression so that the low level network weights and high level network structures are both optimized efficiently. A key element is a relaxation of bilevel optimization to a single level optimization task together with non-differentiable decision-making in the search approximated by a differentiable proxy function. The project will advance knowledge distillation methods, expanding distillation to intermediate layers of teacher networks by leveraging similarity measures on tensors of different shapes, and multi-resolution path learning techniques arising in image segmentations. The investigator will also formulate simplified classification problems for mathematical analysis and the understanding of distillation learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发高效的深度学习架构,用于在移动计算和物联网等资源有限的平台上部署人工智能算法。高性能深度神经网络在计算上消耗数千亿次浮点运算,在内存中存储数亿个参数。然而,在电力和存储资源有限的设备上,需要构建轻量级深度神经网络来保持其重量级设备的性能水平。该项目旨在开发一种高效的基于搜索的体系结构压缩方法和一种新颖的教师-教师-学生(知识蒸馏)框架,以在中间网络(导师)的帮助下从最先进的重量级网络(教师)中提取智能轻量级网络(学生)。受益于该项目的现实世界应用包括移动电话和自动驾驶的视觉计算,无人机的交付、监测和救援任务,以及移动医疗中的疾病检测和诊断。该项目将为少数民族服务机构的理工科本科生培养研究生,并丰富数据科学课程。该项目将研究一种基于搜索的双网络协作结构压缩方法,使低层网络权重和高层网络结构都得到有效优化。一个关键因素是将双层优化放宽到单层优化任务,并用可微代理函数逼近搜索中的不可微决策。该项目将推进知识蒸馏方法,通过利用不同形状张量的相似性度量和图像分割中出现的多分辨率路径学习技术,将蒸馏扩展到教师网络的中间层。研究人员还将为数学分析和对蒸馏学习的理解制定简化的分类问题。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feature Affinity Assisted Knowledge Distillation and Quantization of Deep Neural Networks on Label-Free Data
  • DOI:
    10.1109/access.2023.3297890
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhijian Li;Biao Yang;Penghang Yin;Y. Qi;J. Xin
  • 通讯作者:
    Zhijian Li;Biao Yang;Penghang Yin;Y. Qi;J. Xin
Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent
黎曼随机梯度下降下双曲神经网络的收敛性
Weighted Anisotropic–Isotropic Total Variation for Poisson Denoising
Difference of anisotropic and isotropic TV for segmentation under blur and Poisson noise
  • DOI:
    10.3389/fcomp.2023.1131317
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Bui;Yifei Lou;Fredrick Park;J. Xin
  • 通讯作者:
    Kevin Bui;Yifei Lou;Fredrick Park;J. Xin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Xin其他文献

A structure-preserving scheme for computing effective diffusivity and anomalous diffusion phenomena of random flows
计算随机流的有效扩散率和反常扩散现象的结构保持方案
  • DOI:
    10.48550/arxiv.2405.19003
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tan Zhang;Zhongjian Wang;Jack Xin;Zhiwen Zhang
  • 通讯作者:
    Zhiwen Zhang
Finite Element Computation of KPP Front Speeds in Cellular and Cat#39;s Eye Flows
Cellular 和 Cat 中 KPP 前沿速度的有限元计算
Learning Sparse Neural Networks via \ell _0 and T \ell _1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
通过松弛变量分裂方法通过 ell _0 和 T ell _1 学习稀疏神经网络并应用于多尺度曲线分类
Design projects motivated and informed by the needs of severely disabled autistic children
设计项目以严重残疾自闭症儿童的需求为动力和信息
Three $$l_1$$ Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios
  • DOI:
    10.1007/s10915-017-0578-5
  • 发表时间:
    2017-10-20
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Xiaolong Long;Knut Solna;Jack Xin
  • 通讯作者:
    Jack Xin

Jack Xin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Xin', 18)}}的其他基金

Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
  • 批准号:
    2309520
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
  • 批准号:
    1952644
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
  • 批准号:
    1854434
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
  • 批准号:
    1924548
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
  • 批准号:
    1632935
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Theory and Algorithms of Transformed L1 Minimization with Applications in Data Science
变换 L1 最小化的理论和算法及其在数据科学中的应用
  • 批准号:
    1522383
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Reaction-Diffusion Front Speeds in Chaotic and Stochastic Flows
混沌和随机流中的反应扩散前沿速度
  • 批准号:
    1211179
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ATD: Blind and Template Assisted Source Separation Algorithms with Applications to Spectroscopic Data
ATD:盲和模板辅助源分离算法及其在光谱数据中的应用
  • 批准号:
    1222507
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ADT: Sparse Blind Separation Algorithms of Spectral Mixtures and Applications
ADT:混合光谱的稀疏盲分离算法及应用
  • 批准号:
    0911277
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
  • 批准号:
    1854434
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical and Computational Studies on Bose-Einstein Superfluid
玻色-爱因斯坦超流体的数学和计算研究
  • 批准号:
    1913293
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical Modelling and Computational Simulation Studies of Flagellate Motility
鞭毛运动的数学建模和计算模拟研究
  • 批准号:
    1941986
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Mathematical and Computational Studies in Poroelasticity
多孔弹性的数学和计算研究
  • 批准号:
    1619969
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Mathematical Modeling and Computational Studies of Human Seizure Initiation and Spread
职业:人类癫痫发作和传播的数学建模和计算研究
  • 批准号:
    1451384
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Mathematical modeling and computational studies for proliferation kinetics of tumor growth with spatial-temporal dynamics
时空动力学肿瘤生长增殖动力学的数学建模和计算研究
  • 批准号:
    1308948
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Mathematical and Computational Studies of Interfaces and Defects
界面和缺陷的数学和计算研究
  • 批准号:
    1016073
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical and Computational Studies of Fuel Cell Dynamics
燃料电池动力学的数学和计算研究
  • 批准号:
    0308946
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Engineering Research Equipment: Workstations for Computational Studies in Large-Scale Simulation and Mathematical Programming Research
工程研究设备:大规模仿真和数学规划研究中的计算研究工作站
  • 批准号:
    9423929
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Studies in Commutative Algebra and Its Applications to Computational Algebra
数学科学:交换代数研究及其在计算代数中的应用
  • 批准号:
    9500786
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了