A Hierarchical Multiscale Method for Nonlocal Fine-scale Models via Merging Weak Galerkin and VMS Frameworks
通过合并弱伽辽金和 VMS 框架的非局部细尺度模型的分层多尺度方法
基本信息
- 批准号:1620231
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems in the natural sciences and engineering involve phenomena that possess a spectrum of material, spatial, and temporal scales which correspond to coarse and fine scale physics. Very often fine scale physics is also nonlocal and therefore these problems pose a great challenge to the current computational techniques. Nonlocality of fine-scales and advecting sharp gradients are two key ingredients in the modeling of several classes of fluid dynamics problems. This research effort focuses on the development of variationally based methods for problems with steep gradients and discontinuities in the underlying fields and wherein fine scales have a nonlocal feature. Of specific interest are propagating steep fronts for which interacting discontinuities challenge the stability of the numerical methods. Typical examples are chemically reacting fluids permeating through porous elastic solids where fast reaction rates produce steep concentration fronts. Such problems arise in (i) high temperature injection molding of fibrous composites in micro and nanomaterials engineering, and (ii) enhanced oil recovery and secondary shale gas recovery processes in petroleum engineering. Another class of problems from mathematical physics is advection dominated viscous flows leading to anisotropic turbulence. The PI will develop a unique and novel, simultaneous top-down and bottom-up multiscale approach for consistent representation of both the hierarchy of scales as well as the structure of inter-scale coupling operators for complex fluid mechanics problems. It blends ideas from the Variational Multiscale (VMS) method that helps decompose the governing system of equations into coarse-scale and fine-scale sub-problems and then employs Weak Galerkin (WG) ideas at the fine-scale variational level to extract models for the finer physics. Weak continuity of functions that is facilitated by the Weak Galerkin method results in fine-scale models that are nonlocal. A further generalization of WG via Discontinuous Galerkin (DG) ideas provides a framework to develop methods for problems with sharp gradients on sound mathematical basis. This notion leads to variationally derived Discontinuity Capturing (DC) methods that are independent of the user-defined or user-designed parameters. Emphasis is placed throughout on variationally consistent interscale coupling with rigorous treatment of the continuity conditions that are critical for the mathematical and algorithmic stability. The resulting computational algorithms will be ideal for massively parallel computing on distributed systems where message passing traditionally has been a bottle neck. The variational structures underlying the new methods will increase local-solves that are cost effective because of local resident memory on the new generation of processors while substantially reducing global communication between processors, thereby leading to efficient and economic computations. The mathematical frameworks and computational algorithms emanating from this work will be broadly disseminated by publication in high-quality archival journals, and by presentations at high impact conferences.
自然科学和工程中的许多问题都涉及到具有物质、空间和时间尺度光谱的现象,这些尺度对应于粗尺度和精细尺度的物理。细尺度物理通常也是非局域的,因此这些问题对当前的计算技术构成了巨大的挑战。细尺度的非局域性和平流的尖锐梯度是模拟几类流体动力学问题的两个关键因素。这项研究工作集中于发展基于变分的方法来解决下垫场中具有陡峭梯度和不连续性的问题,其中细尺度具有非局部特征。特别令人感兴趣的是传播陡峭的锋面,相互作用的不连续性对数值方法的稳定性提出了挑战。典型的例子是化学反应流体渗透到多孔弹性固体中,其中快速的反应速度会产生陡峭的浓度前沿。这些问题出现在(I)微纳米材料工程中纤维复合材料的高温注射成型,(Ii)石油工程中的强化采油和页岩气二次开采工艺。数学物理中的另一类问题是平流主导的粘性流动,导致各向异性湍流。PI将开发一种独特而新颖的、同时自上而下和自下而上的多尺度方法,以一致地表示复杂流体力学问题的尺度层次和尺度间耦合算子的结构。它融合了变分多尺度(VMS)方法的思想,该方法将控制方程系统分解为粗尺度和细尺度的子问题,然后在细尺度的变分水平上使用弱Galerkin(WG)思想来提取更精细的物理模型。由弱Galerkin方法促成的函数的弱连续性导致了非局部的精细模型。通过不连续Galerkin(DG)思想对WG的进一步推广,为在合理的数学基础上发展具有尖锐梯度问题的方法提供了一个框架。这一概念导致了与用户定义或用户设计的参数无关的变分派生的不连续捕获(DC)方法。始终强调变分一致的尺度间耦合与对数学和算法稳定性至关重要的连续性条件的严格处理。由此产生的计算算法将是分布式系统上大规模并行计算的理想选择,在分布式系统中,消息传递传统上一直是一个瓶颈。基于新方法的变分结构将增加由于新一代处理器上的本地驻留存储器而具有成本效益的局部解,同时显著减少处理器之间的全局通信,从而导致高效和经济的计算。这项工作产生的数学框架和计算算法将通过在高质量的档案期刊上发表和在影响较大的会议上发表演讲来广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arif Masud其他文献
A tribute to Thomas J.R. Hughes on the occasion of his 65th birthday
- DOI:
10.1007/s00466-010-0492-2 - 发表时间:
2010-04-02 - 期刊:
- 影响因子:3.800
- 作者:
Arif Masud;Yuri Bazilevs;Tayfun E. Tezduyar - 通讯作者:
Tayfun E. Tezduyar
Thermo-chemo-mechanical model and variational multiscale framework for material and geometric evolution in frontal polymerization
用于前沿聚合中材料和几何演化的热 - 化学 - 力学模型及变分多尺度框架
- DOI:
10.1016/j.jmps.2025.106078 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Ignasius P.A. Wijaya;Philippe Geubelle;Arif Masud - 通讯作者:
Arif Masud
Modeling of steep layers in singularly perturbed diffusion–reaction equation via flexible fine-scale basis
- DOI:
10.1016/j.cma.2020.113343 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:
- 作者:
Arif Masud;Marcelino Anguiano;Isaac Harari - 通讯作者:
Isaac Harari
Effects of Mesh Motion on the Stability and Convergence of ALE Based Formulations for Moving Boundary Flows
- DOI:
10.1007/s00466-006-0062-9 - 发表时间:
2006-04-06 - 期刊:
- 影响因子:3.800
- 作者:
Arif Masud - 通讯作者:
Arif Masud
Arif Masud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arif Masud', 18)}}的其他基金
16th US National Congress on Computational Mechanics (USNCCM XVI); Virtual; July 25-29, 2021
第十六届美国全国计算力学大会(USNCCM XVI);
- 批准号:
2129730 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A Computational/Experimental Multiscale Approach to the Analysis of Structures Containing Mechanical Joints
包含机械接头的结构分析的计算/实验多尺度方法
- 批准号:
0800208 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A New Class of Stabilized Methods for Multiscale Problems in Computational Solid Mechanics
计算固体力学中多尺度问题的一类新的稳定方法
- 批准号:
0085144 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A Mico-Mechanics Based Thermo-Mechanica Constitutive Model for Finite Deformation Analysis of Shape Memory Materials
基于微力学的形状记忆材料有限变形分析热机械本构模型
- 批准号:
9813386 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
An Orthotropic Damage and Delamination Model for Crushing Analysis of Laminated Composites
用于层压复合材料压碎分析的正交各向异性损伤和分层模型
- 批准号:
9812205 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
A Semi-Analytical, Heterogeneous Multiscale Method for Simulation of Inverter-Dense Power Grids
一种用于逆变器密集电网仿真的半解析异构多尺度方法
- 批准号:
2329924 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Development of multiscale simulation method for nano-polycrystalline thermoelectric materials
纳米多晶热电材料多尺度模拟方法的发展
- 批准号:
23KJ0511 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of the Multiscale and Multi-electro-chemo-mechanical Lifecycle Evaluation Method of Impressed Current Cathodic Protection Applied to Reinforced Concrete Structures
钢筋混凝土结构外加电流阴极保护多尺度、多电化学-机械生命周期评价方法的发展
- 批准号:
23K19134 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation for microscopic failure mechanism of CFRP and development for multiscale numerical method
CFRP微观失效机理研究及多尺度数值方法开发
- 批准号:
23K03588 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
- 批准号:
RGPIN-2021-04227 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
- 批准号:
RGPIN-2021-04227 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Multiscale structural optimization based on integrated multidisciplinary system design method
基于多学科综合系统设计方法的多尺度结构优化
- 批准号:
21K19768 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
- 批准号:
DGECR-2021-00276 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Launch Supplement
Multiscale management method to reduce the risk of age-related degradation of energy plant components
多尺度管理方法可降低能源工厂组件与年龄相关的退化风险
- 批准号:
20K04177 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel method for estimation of equivalent elastic properties and strength of heterogeneous materials considering a multiscale uncertainties propagation
考虑多尺度不确定性传播的异质材料等效弹性性能和强度估计新方法的建立
- 批准号:
20H02035 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




