Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology

任意拓扑流形上几何偏微分方程的数值方法

基本信息

  • 批准号:
    1620366
  • 负责人:
  • 金额:
    $ 21.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with the approximate solution of systems of stationary and evolution partial differential equations (PDE) arising at the intersection of mathematical physics and geometric analysis. Such systems of equations, known as Geometric PDE, appear in a wide range of physical and mathematical problems; one of the primary motivations for this project is the Einstein, which are of central importance to gravitational wave science. One of the most challenging features of this class of problems, for both mathematical analysis and computational simulation, is the underlying spatial domain which has the structure of a potentially complicated manifold rather than a simple shape in 3-space. Moreover, both the geometry and the topology of this manifold may evolve over time, depending on the particular model. The research results will have a broad impact on areas of mathematics such as geometric analysis, as well as in astrophysics and general relativity. The methods developed will contribute to the advancement of numerical methods for complex three-dimensional constrained nonlinear dynamical simulations. The simulation technology the PIs produce will provide powerful tools for the exploration of models in astrophysics and relativity as well as in some areas of pure mathematics such as geometric analysis. The two graduate students involved in the project will be co-trained by both investigators; this will involve regular interaction between all four members of the team.The primary technical aim of this project is to develop a general approximation theory framework, together with reliable and provably convergent adaptive methods, for the intrinsic discretization of a general class of nonlinear geometric elliptic and evolution PDE on Riemannian 2- and 3-manifolds. While the solution theory for this class of PDE has been intensively studied over the last thirty years, progress on the development of robust numerical methods with a corresponding approximation theory has been a more recent development. Most of the approaches to date, such as surface finite element methods for two-dimensional problems, are based on exploiting the embedding of the surface into 3-dimension. For applications such as general relativity, a more general approach is needed that does not rely on the existence of such an embedding. In this project, the PIs will study the development of truly intrinsic discretizations that use no extrinsic information to produce a discretization, to allow for the development of numerical methods on Riemannian 2- and 3-manifolds with arbitrary topology. The PIs' approach is to develop an atlas-based discretization using techniques such as the multi-cube framework and the local simplex approximation techniques developed by the project team. To develop a corresponding error analysis framework, the PIs will exploit the variational crimes framework for methods in surfaces, such as methods based on finite element exterior calculus.
这个项目关注的是在数学物理和几何分析的交叉点上产生的静态和演化偏微分方程(PDE)系统的近似解。这样的方程组,被称为几何偏微分方程,出现在广泛的物理和数学问题中;这个项目的主要动机之一是爱因斯坦,这对引力波科学至关重要。对于数学分析和计算模拟来说,这类问题最具挑战性的特征之一是其潜在的空间域,该空间域具有潜在的复杂流形结构,而不是3-空间中的简单形状。此外,这个流形的几何形状和拓扑结构都可能随着时间的推移而演变,这取决于特定的模型。研究结果将对几何分析等数学领域以及天体物理学和广义相对论产生广泛影响。所开发的方法将有助于复杂的三维约束非线性动力学模拟的数值方法的进步。PI产生的模拟技术将为天体物理学和相对论以及某些纯数学领域(如几何分析)的模型探索提供强大的工具。参与该项目的两名研究生将接受双方研究人员的共同培训;这将涉及团队所有四名成员之间的定期互动。该项目的主要技术目标是开发一个通用的近似理论框架,以及可靠的和可证明收敛的自适应方法,研究了黎曼2-流形和黎曼3-流形上一类非线性几何椭圆和发展偏微分方程的内禀离散问题。 虽然这类偏微分方程的解理论在过去的三十年里得到了深入的研究,但最近发展的是具有相应近似理论的鲁棒数值方法。大多数的方法,如二维问题的表面有限元方法,是基于利用嵌入到3维的表面。对于像广义相对论这样的应用,需要一种更一般的方法,不依赖于这种嵌入的存在。在这个项目中,PI将研究真正的内在离散化的发展,不使用外部信息来产生离散化,以允许在具有任意拓扑的黎曼2-和3-流形上开发数值方法。 PI的方法是使用项目团队开发的多立方体框架和局部单纯形近似技术等技术开发基于地图集的离散化。为了开发相应的错误分析框架,PI将利用变分犯罪框架的方法在表面上,如基于有限元外演算的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Holst其他文献

Effects of Membrane Calcium Flux Localizations and Realistic T-Tubule Geometry on Cardiac Excitation-Contraction Coupling
  • DOI:
    10.1016/j.bpj.2009.12.2985
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuhui Cheng;Zeyun Yu;Masahiko Hoshijima;Michael Holst;Andrew McCulloch;Andrew McCammon;Anushka Michailova
  • 通讯作者:
    Anushka Michailova
MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By
具有跳跃系数的椭圆问题的不连续 Galerkin 逼近的多级预处理器
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. A. Dios;Michael Holst;Yunrong Zhu;L. Zikatanov;B. A. Dios;Michael Holst;Yunrong Zhu
  • 通讯作者:
    Yunrong Zhu
Modeling the Impact of Spine Apparatus on Signaling and Regulation in Realistic Dendritic Spine Geometries
  • DOI:
    10.1016/j.bpj.2018.11.1303
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Justin G. Laughlin;Christopher T. Lee;J. Andrew McCammon;Rommie E. Amaro;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani
Correlating Dendritic Spine Geometry and Calcium Transients to Learning and Information Processing
  • DOI:
    10.1016/j.bpj.2019.11.1632
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher T. Lee;Justin G. Laughlin;Miriam Bell;Michael Holst;Padmini Rangamani
  • 通讯作者:
    Padmini Rangamani
Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries
具有表观视界边界的紧流形上爱因斯坦约束方程的非CMC解
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Holst;Caleb Meier;G. Tsogtgerel
  • 通讯作者:
    G. Tsogtgerel

Michael Holst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Holst', 18)}}的其他基金

Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
协作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2132896
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
  • 批准号:
    1262982
  • 财政年份:
    2013
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
  • 批准号:
    1217175
  • 财政年份:
    2012
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
  • 批准号:
    1065972
  • 财政年份:
    2011
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Parallel Computing and Visualization Facility to Enable Integrated Research and Training in Modern Computational Science, Mathematics, and Engineering
MRI:收购并行计算和可视化设施,以实现现代计算科学、数学和工程的综合研究和培训
  • 批准号:
    0821816
  • 财政年份:
    2008
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
  • 批准号:
    0715146
  • 财政年份:
    2007
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Parallel Computing and Visualization Infrastructure for Scientific Computation
科学计算的并行计算和可视化基础设施
  • 批准号:
    0619173
  • 财政年份:
    2006
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Nonlinear Diffusion Problems
合作研究:非线性扩散问题的数值方法
  • 批准号:
    0411723
  • 财政年份:
    2004
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2021
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
  • 批准号:
    2012857
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2020
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Numerical Integration Methods for Differential-Algebraic Equations and Their Application to Evolutionary Equations
微分代数方程的几何数值积分方法及其在演化方程中的应用
  • 批准号:
    19K23399
  • 财政年份:
    2019
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2018
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2017
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2016
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Standard Grant
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
  • 批准号:
    312489-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 21.45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了