Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
基本信息
- 批准号:1217175
- 负责人:
- 金额:$ 14.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary technical aim of this project is to develop general approximation theory and reliable, convergent adaptive methods for the intrinsic discretization of a general class of nonlinear geometric elliptic and evolution PDE on Riemannian 2- and 3-manifolds. The investigators will exploit the variational crimes framework they have developed for the finite element exterior calculus (FEEC), extending the FEEC to nonlinear elliptic problems, to problems on hypersurfaces, and to nonlinear parabolic and hyperbolic problems. This framework will aid in the design, development, and convergence analysis of AFEM algorithms for use with FEEC. This approach will allow for a more natural and general treatment of geometric error due to variational crimes in a posteriori analysis, following their recent approach for a priori analysis. After obtaining a solid theoretical framework for a posteriori analysis, yielding a posteriori error estimates and local indicators, they will develop and analyze adaptive finite element methods (AFEM) within the extended FEEC framework. The convergence analysis approach will be based on their recent published work on AFEM convergence analysis for mixed formulations of linear elliptic problems. The overall goal is to develop a complete AFEM convergence theory in FEEC, complementing the recently developed contraction frameworks for non-mixed formulations of Poisson-type problems and semilinear generalizations. Both prototype and production implementations will be produced, using the opensource FETK ToolKit, and the resulting software will be used in ongoing collaborations with physical scientists and engineers.The investigators will study and develop methods for the approximate solution of systems of stationary and evolution partial differential equations (PDE) arising at the intersection of mathematical physics and geometric analysis. Such systems of equations, known as Geometric PDE, appear in a wide range of physical and mathematical problems; examples include Maxwell's equations (or more generally the Yang-Mills equations), Einstein's field equations, and other Hamiltonian systems. The Cauchy (or initial-value) formulation for such systems yields a constrained evolution system containing non-dynamical equations. These non-dynamical geometric PDE are of great interest in their own right; examples include the Yamabe problem, the Hamiltonian and momentum constraints in the Einstein equations, and the Monge-Ampere equations, among others. If our goals are achieved, the results of this project will have a broad impact on areas of mathematics such as geometric analysis, as well as in astrophysics and general relativity. The methods developed here will contribute to the advancement of numerical methods for complex three-dimensional constrained nonlinear dynamical simulations. The simulation technology we produce will provide powerful tools for the exploration of models in astrophysics and relativity as well as in some areas of pure mathematics such as geometric analysis. Graduate students involved in the project will be co-trained by both investigators; this will involve regular interaction between the members of the teams at both partner institutions. The PI has previously collaborated on such a shared training structure with great success on past projects; this shared training and transfer of knowledge and skills between the two research groups will be an invaluable research resource to both groups.
该项目的主要技术目标是发展一般的逼近理论和可靠的,收敛的自适应方法的内在离散的一般类的非线性几何椭圆和发展偏微分方程的黎曼2-和3-流形。 研究人员将利用他们为有限元外微积分(FEEC)开发的变分犯罪框架,将FEEC扩展到非线性椭圆问题,超曲面问题以及非线性抛物和双曲问题。 该框架将有助于与FEEC一起使用的AFEM算法的设计、开发和收敛性分析。 这种方法将允许一个更自然和一般的治疗几何错误,由于变分犯罪的后验分析,他们最近的方法进行先验分析。在获得后验分析的坚实理论框架,产生后验误差估计和局部指标后,他们将在扩展FEEC框架内开发和分析自适应有限元方法(AFEM)。收敛性分析方法将基于他们最近发表的关于线性椭圆问题混合公式的AFEM收敛性分析的工作。总体目标是在FEEC中开发一个完整的AFEM收敛理论,补充最近开发的泊松型问题和半线性推广的非混合配方的收缩框架。将使用开源FETK ToolKit生成原型和产品实现,并将在与物理科学家和工程师的持续合作中使用所生成的软件。研究人员将研究和开发数学物理和几何分析交叉点上产生的稳态和演化偏微分方程(PDE)系统的近似解方法。这样的方程组,被称为几何偏微分方程,出现在广泛的物理和数学问题中;例子包括麦克斯韦方程(或更一般的杨-米尔斯方程),爱因斯坦场方程和其他哈密顿系统。这种系统的柯西(或初值)公式产生一个包含非动力学方程的约束演化系统。这些非动力学几何偏微分方程本身就有很大的意义,例如Yamabe问题、爱因斯坦方程中的哈密顿量和动量约束、Monge-Ampere方程等。如果我们的目标得以实现,这个项目的结果将对几何分析等数学领域以及天体物理学和广义相对论产生广泛的影响。本文所提出的方法将有助于复杂三维约束非线性动力学数值模拟方法的发展。我们生产的模拟技术将为天体物理学和相对论以及一些纯数学领域(如几何分析)的模型探索提供强大的工具。参与该项目的研究生将由两名研究人员共同培训;这将涉及两个合作机构的团队成员之间的定期互动。 PI以前曾在这样一个共享的培训结构上进行过合作,在过去的项目中取得了巨大的成功;这两个研究小组之间的知识和技能的共享培训和转让将成为两个小组的宝贵研究资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Holst其他文献
Effects of Membrane Calcium Flux Localizations and Realistic T-Tubule Geometry on Cardiac Excitation-Contraction Coupling
- DOI:
10.1016/j.bpj.2009.12.2985 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Yuhui Cheng;Zeyun Yu;Masahiko Hoshijima;Michael Holst;Andrew McCulloch;Andrew McCammon;Anushka Michailova - 通讯作者:
Anushka Michailova
MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By
具有跳跃系数的椭圆问题的不连续 Galerkin 逼近的多级预处理器
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. A. Dios;Michael Holst;Yunrong Zhu;L. Zikatanov;B. A. Dios;Michael Holst;Yunrong Zhu - 通讯作者:
Yunrong Zhu
Modeling the Impact of Spine Apparatus on Signaling and Regulation in Realistic Dendritic Spine Geometries
- DOI:
10.1016/j.bpj.2018.11.1303 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Justin G. Laughlin;Christopher T. Lee;J. Andrew McCammon;Rommie E. Amaro;Michael Holst;Padmini Rangamani - 通讯作者:
Padmini Rangamani
Correlating Dendritic Spine Geometry and Calcium Transients to Learning and Information Processing
- DOI:
10.1016/j.bpj.2019.11.1632 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Christopher T. Lee;Justin G. Laughlin;Miriam Bell;Michael Holst;Padmini Rangamani - 通讯作者:
Padmini Rangamani
Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries
具有表观视界边界的紧流形上爱因斯坦约束方程的非CMC解
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Michael Holst;Caleb Meier;G. Tsogtgerel - 通讯作者:
G. Tsogtgerel
Michael Holst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Holst', 18)}}的其他基金
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309780 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
协作提案:神经网络数值建模、学习和多级有限元方法研讨会
- 批准号:
2132896 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
- 批准号:
2012857 - 财政年份:2020
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology
任意拓扑流形上几何偏微分方程的数值方法
- 批准号:
1620366 - 财政年份:2016
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
- 批准号:
1262982 - 财政年份:2013
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Error Quantification and Control for Gravitational Waveform Simulation
FRG:协作研究:重力波形仿真的误差量化和控制
- 批准号:
1065972 - 财政年份:2011
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Parallel Computing and Visualization Facility to Enable Integrated Research and Training in Modern Computational Science, Mathematics, and Engineering
MRI:收购并行计算和可视化设施,以实现现代计算科学、数学和工程的综合研究和培训
- 批准号:
0821816 - 财政年份:2008
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Finite Element Methods for Discretizing Geometric PDEs with Nonlinear Constraints and Gauge Freedom
协作研究:具有非线性约束和规范自由度的离散几何偏微分方程的有限元方法
- 批准号:
0715146 - 财政年份:2007
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Parallel Computing and Visualization Infrastructure for Scientific Computation
科学计算的并行计算和可视化基础设施
- 批准号:
0619173 - 财政年份:2006
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods for Nonlinear Diffusion Problems
合作研究:非线性扩散问题的数值方法
- 批准号:
0411723 - 财政年份:2004
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316614 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335800 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316613 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant