Numerical and Analytical Investigations on Nonlocal Dispersive Wave Equations
非局部色散波动方程的数值与分析研究
基本信息
- 批准号:1620465
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlocal dispersive wave equations have been recently applied in many areas such as electromagnetism, acoustics, cosmology, elasticity, biology, hydrodynamics, viscoelasticity, seismics, water wave, plasma, quantum mechanics, brain and consciousness, and so on. However, their nonlocality introduces considerable challenges in both mathematical analysis and numerical simulations. This project seeks to address fundamental issues related to mathematical modeling and numerical simulations of nonlocal dispersive wave equations as well as their solution properties. The proposed project will bridge the gap between different areas, enhance interdisciplinary research, and advance the application of fractional differential equations in practice. Since nonlocal wave equations have broad applications in physics, chemistry, biology and engineering, the research in this project has great potentials to advance the research and technology in relevant areas.The main objectives of this research are to build mathematical and numerical treatments for the nonlocal Schroedinger wave equations, and to provide a deeper understanding of the modeling with long-range interactions, so as to advance their application to problems with nonlocality. In this project, both the discrete nonlinear Schroedinger (DNLS) equation with long-range interactions and the fractional nonlinear Schroedinger (fNLS) equation with the fractional Laplacian will be investigated. Integrating the discrete and continuous models offers a new opportunity for a deeper understanding of the nonlocality of the Schroedinger wave equations. On the one hand, accurate algorithms will be developed to improve the efficiency and reduce the computational costs in simulating the DNLS with large lattice sites, especially in two- or three-dimensional lattices. On the other hand, efficient and accurate numerical methods for discretizing the fractional Laplacian will be designed and applied to study the properties of the stationary states and dynamics of fNLS. The study on the DNLS and fNLS will provide a deeper understanding on modeling and properties of long-range interactions, as well as is benefitting the development of numerical algorithms for fractional differential equations.
非局部色散波方程在电磁学、声学、宇宙学、弹性力学、生物学、流体力学、粘弹性、地震学、水波、等离子体、量子力学、大脑和意识等领域有着广泛的应用,但其非局部性给数学分析和数值模拟带来了相当大的挑战。本计画旨在探讨非局部色散波方程之数学建模与数值模拟及其解之性质。该项目将弥合不同领域之间的差距,加强跨学科研究,并促进分数阶微分方程在实践中的应用。由于非局部波动方程在物理、化学、生物和工程等领域有着广泛的应用,本项目的研究对推动相关领域的研究和技术具有巨大的潜力,本研究的主要目的是建立非局部Schroedinger波动方程的数学和数值处理方法,加深对长程相互作用模型的理解,从而促进它们在非定域性问题中的应用。本计画将研究具有长程作用的离散非线性薛定谔(DNLS)方程和具有分数拉普拉斯算子的分数阶非线性薛定谔(fNLS)方程。结合离散和连续模型提供了一个新的机会,更深入地了解薛定谔波动方程的非局部性。一方面,精确的算法将被开发,以提高效率和减少计算成本,在模拟DNLS与大的晶格位置,特别是在二维或三维晶格。另一方面,有效和准确的数值方法离散的分数拉普拉斯算子将被设计和应用于研究的fNLS的定态和动力学的属性。对DNLS和fNLS的研究将加深对长程相互作用的建模和性质的理解,同时也有利于分数阶微分方程数值算法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanzhi Zhang其他文献
Array synthesis of novel lipodepsipeptide.
新型脂缩肽的阵列合成。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:2.7
- 作者:
J. Siedlecki;Jason M. Hill;I. Parr;Xiang Y. Yu;M. Morytko;Yanzhi Zhang;J. Silverman;Nicole Controneo;V. Laganas;Tongchuan Li;Jianshi Li;D. Keith;G. Shimer;J. Finn - 通讯作者:
J. Finn
Experimental study on the boiling criterion of the fuel film formed from spray/wall impingement
喷雾/壁面冲击形成油膜沸腾判据的实验研究
- DOI:
10.1007/s00348-019-2829-8 - 发表时间:
2019-11 - 期刊:
- 影响因子:2.4
- 作者:
Hong Liu;Jianxiang Wang;Huiquan Duan;Chang Cai;Ming Jia;Yanzhi Zhang - 通讯作者:
Yanzhi Zhang
Thermophysical properties of n-dodecane over a wide temperature and pressure range via molecular dynamics simulations with modification methods
通过分子动力学模拟和改性方法研究正十二烷在宽温度和压力范围内的热物理性质
- DOI:
10.1016/j.molliq.2022.121102 - 发表时间:
2022 - 期刊:
- 影响因子:6
- 作者:
Zhi;Yuanyuan Shen;Chuqiao Wang;Yanzhi Zhang;Qian Wang;M. Gavaises - 通讯作者:
M. Gavaises
Concomitant Epoxide Deoxygenation and Deacetylation of Glycidyl Acetates Induced by Telluride Ion
碲化物离子诱导的乙酸缩水甘油酯的伴随环氧化物脱氧和脱乙酰化
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
D. Dittmer;Yanzhi Zhang;Robert P. Discordia - 通讯作者:
Robert P. Discordia
Exploring the Influence of Cultural Identity on Tourists' Behavioral Intention of Environmentally Responsibility
- DOI:
10.56028/aemr.8.1.9.2023 - 发表时间:
2023-10 - 期刊:
- 影响因子:0
- 作者:
Yanzhi Zhang - 通讯作者:
Yanzhi Zhang
Yanzhi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanzhi Zhang', 18)}}的其他基金
Fractional Viscoacoustic Wave Equations: Mathematical Analysis, Efficient Simulations, and Applications to Full-Waveform Inversion of Seismic Data
分数阶粘声波方程:数学分析、高效模拟以及在地震数据全波形反演中的应用
- 批准号:
1953177 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical and Computational Studies on Bose-Einstein Superfluid
玻色-爱因斯坦超流体的数学和计算研究
- 批准号:
1913293 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collab. Research: Instability analysis of the split-step method on spatially-varying backgrounds, with applications to optical telecommunications and Bose-Einstein condensation
合作。
- 批准号:
1217000 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Experimental, analytical and numerical investigations of emerging materials for sensing, actuation and energy harvesting
用于传感、驱动和能量收集的新兴材料的实验、分析和数值研究
- 批准号:
239023-2010 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Influence of triboinduced films on failures and frictional behaviour of gears with particular focus on running-in processes - experimental and analytical investigations
摩擦引起的薄膜对齿轮故障和摩擦行为的影响,特别关注磨合过程 - 实验和分析研究
- 批准号:
262631975 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Priority Programmes
Pursuing the Nucleus: Experimental, Theoretical, and Analytical Investigations of Bubble and Crystal Formation in Magma
追寻原子核:岩浆中气泡和晶体形成的实验、理论和分析研究
- 批准号:
1321890 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Experimental, analytical and numerical investigations of emerging materials for sensing, actuation and energy harvesting
用于传感、驱动和能量收集的新兴材料的实验、分析和数值研究
- 批准号:
239023-2010 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Experimental and analytical investigations of extrusion seams in magnesium hollow profiles
镁空心型材挤压缝的实验和分析研究
- 批准号:
232117021 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Research Grants
Experimental, analytical and numerical investigations of emerging materials for sensing, actuation and energy harvesting
用于传感、驱动和能量收集的新兴材料的实验、分析和数值研究
- 批准号:
239023-2010 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Experimental and Analytical Investigations of Shake Table Tests of a Reinforced Concrete Structure at the E-Defense Shake Table Facility
E-Defense 振动台设施钢筋混凝土结构振动台试验的实验和分析研究
- 批准号:
1201168 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Experimental, analytical and numerical investigations of emerging materials for sensing, actuation and energy harvesting
用于传感、驱动和能量收集的新兴材料的实验、分析和数值研究
- 批准号:
239023-2010 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Experimental, analytical and numerical investigations of emerging materials for sensing, actuation and energy harvesting
用于传感、驱动和能量收集的新兴材料的实验、分析和数值研究
- 批准号:
239023-2010 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Analytical and Experimental Investigations of Feedback Control Designs for Bipedal Walkers and Runners
双足步行者和跑步者反馈控制设计的分析和实验研究
- 批准号:
0856213 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Standard Grant