Fractional Viscoacoustic Wave Equations: Mathematical Analysis, Efficient Simulations, and Applications to Full-Waveform Inversion of Seismic Data
分数阶粘声波方程:数学分析、高效模拟以及在地震数据全波形反演中的应用
基本信息
- 批准号:1953177
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Seismic waveform inversion is a widely used technique in the oil and gas industry as well as in geophysical research. This technique is among the most powerful subsurface imaging techniques; its success relies on both an accurate model of seismic wave propagation and efficient numerical computation for the practical implementation. This project addresses fundamental mathematical and computational issues in these two aspects and thus is of central importance for various applications, including imaging of the Earth's interior, subsurface exploration in the oil and gas industry, monitoring in carbon sequestration and geothermal facilities, and earthquake engineering. Students will be trained through involvement in the interdisciplinary research activities.The main objectives of this research are to build mathematical and computational treatments for fractional viscoacoustic wave equations, to provide efficient and accurate modeling algorithms, and to further construct the viscoacoustic full-waveform inversion algorithm of seismic data. The fractional viscoacoustic wave equation, accounting for both seismic attenuation and dispersion in wave propagation, opens a promising direction to study seismic waves with attenuation. However, its nonlocality introduces considerable challenges. This project will involve systematic research in mathematical analysis, numerical simulations, and geophysical applications of data inversion, validation, and applications. On the theoretical side, the nonlocal properties of the fractional viscoacoustic wave equation will be investigated. On the numerical side, numerical analysis and efficient algorithms will be developed for its effective simulation. Building on these results, implementation issues for the viscoacoustic full-waveform inversion associated with fractional viscoacoustic wave equations will be addressed. The validation of the full-waveform inversion will be carried out with both synthetic data and field data from the Frio Formation carbon dioxide sequestration site in Texas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地震波形反演是石油和天然气工业以及地球物理研究中广泛使用的技术。该技术是最强大的地下成像技术之一;其成功依赖于地震波传播的精确模型和实际实施的有效数值计算。该项目解决了这两个方面的基本数学和计算问题,因此对各种应用至关重要,包括地球内部的成像,石油和天然气工业的地下勘探,碳封存和地热设施的监测以及地震工程。本研究的主要目标是建立分数阶粘声波方程的数学和计算处理方法,提供高效准确的建模算法,并进一步构建地震数据的粘声波全波形反演算法。分数阶粘声波方程同时考虑了地震波传播过程中的衰减和频散,为研究衰减地震波开辟了一个很有前途的方向。然而,它的非局部性带来了相当大的挑战。该项目将涉及数学分析,数值模拟和数据反演,验证和应用的地球物理应用的系统研究。在理论方面,分数阶粘声波方程的非局部性质将被研究。在数值方面,数值分析和有效的算法将开发其有效的模拟。建立在这些结果的基础上,实施问题的粘声波全波形反演与分数粘声波方程将得到解决。全波形反演的验证将与合成数据和来自德克萨斯州弗里奥地层二氧化碳封存现场的现场数据一起进行。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization
积分分数拉普拉斯算子的高精度算子分解方法及其推广
- DOI:10.3934/dcdss.2022016
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wu, Yixuan;Zhang, Yanzhi
- 通讯作者:Zhang, Yanzhi
A unified meshfree pseudospectral method for solving both classical and fractional PDEs
- DOI:10.1137/20m1335959
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:J. Burkardt;Yixuan Wu;Yanzhi Zhang
- 通讯作者:J. Burkardt;Yixuan Wu;Yanzhi Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanzhi Zhang其他文献
Experimental study on the boiling criterion of the fuel film formed from spray/wall impingement
喷雾/壁面冲击形成油膜沸腾判据的实验研究
- DOI:
10.1007/s00348-019-2829-8 - 发表时间:
2019-11 - 期刊:
- 影响因子:2.4
- 作者:
Hong Liu;Jianxiang Wang;Huiquan Duan;Chang Cai;Ming Jia;Yanzhi Zhang - 通讯作者:
Yanzhi Zhang
Array synthesis of novel lipodepsipeptide.
新型脂缩肽的阵列合成。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:2.7
- 作者:
J. Siedlecki;Jason M. Hill;I. Parr;Xiang Y. Yu;M. Morytko;Yanzhi Zhang;J. Silverman;Nicole Controneo;V. Laganas;Tongchuan Li;Jianshi Li;D. Keith;G. Shimer;J. Finn - 通讯作者:
J. Finn
Concomitant Epoxide Deoxygenation and Deacetylation of Glycidyl Acetates Induced by Telluride Ion
碲化物离子诱导的乙酸缩水甘油酯的伴随环氧化物脱氧和脱乙酰化
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
D. Dittmer;Yanzhi Zhang;Robert P. Discordia - 通讯作者:
Robert P. Discordia
Thermophysical properties of n-dodecane over a wide temperature and pressure range via molecular dynamics simulations with modification methods
通过分子动力学模拟和改性方法研究正十二烷在宽温度和压力范围内的热物理性质
- DOI:
10.1016/j.molliq.2022.121102 - 发表时间:
2022 - 期刊:
- 影响因子:6
- 作者:
Zhi;Yuanyuan Shen;Chuqiao Wang;Yanzhi Zhang;Qian Wang;M. Gavaises - 通讯作者:
M. Gavaises
Exploring the Influence of Cultural Identity on Tourists' Behavioral Intention of Environmentally Responsibility
- DOI:
10.56028/aemr.8.1.9.2023 - 发表时间:
2023-10 - 期刊:
- 影响因子:0
- 作者:
Yanzhi Zhang - 通讯作者:
Yanzhi Zhang
Yanzhi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanzhi Zhang', 18)}}的其他基金
Mathematical and Computational Studies on Bose-Einstein Superfluid
玻色-爱因斯坦超流体的数学和计算研究
- 批准号:
1913293 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Numerical and Analytical Investigations on Nonlocal Dispersive Wave Equations
非局部色散波动方程的数值与分析研究
- 批准号:
1620465 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collab. Research: Instability analysis of the split-step method on spatially-varying backgrounds, with applications to optical telecommunications and Bose-Einstein condensation
合作。
- 批准号:
1217000 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant