Collaborative Research: Analysis of longitudinal multiscale data in immunological bioinformatics --- Feature selection, graphical models, and structure identification
合作研究:免疫生物信息学中纵向多尺度数据分析——特征选择、图形模型和结构识别
基本信息
- 批准号:1620898
- 负责人:
- 金额:$ 14.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop a system of statistical analysis tools to tackle several important challenges in analysis of complex bioinformatics data, which involves a variety of response variables and tens of thousands independent variables. The interest often lies in identifying the key independent variables associated with the response variables, and understanding such associations as well as the interactions among the independent variables.The extreme magnitude and complexity of bioinformatics data have posed serious challenges for data analysis. To overcome these challenges, we propose (i) to systematically and properly integrate multi-scale data before we can apply our novel modeling and analysis methods since the data we explore are collected by numerous independent studies at phenotypic, cellular, protein, and genetic levels with information from very different time and dimension scales; (ii) to develop feature screening criteria for a mixed type of longitudinal data using the combination of correlation tests in bivariate longitudinal regression models and the Benjamini-Hochberg-Yekutieli procedure, (iii) to develop graphical models that allow the variables being a mix of continuous and discrete longitudinal variables, with the nodes representing variables and each edge indicating the dependence of the two relevant variables conditional on the other variables; and (iv) to investigate the functioning form of each predictor by resorting to the data themselves under the framework of a mixed effects regression model with a continuous or discrete response and a high dimensional vector of predictors, with the resulting procedure allowing a user to simultaneously determine the form of each predictor effect to be zero, linear or nonlinear.
该项目旨在开发一个统计分析工具系统,以应对复杂生物信息学数据分析中的几个重要挑战,这些数据涉及各种响应变量和数万个独立变量。生物信息学的研究兴趣在于识别与响应变量相关的关键自变量,并理解这些自变量之间的相互关系,生物信息学数据的巨大规模和复杂性给数据分析带来了严峻的挑战。为了克服这些挑战,我们建议(i)在我们可以应用我们的新建模和分析方法之前,系统地和适当地整合多尺度数据,因为我们探索的数据是通过表型,细胞,蛋白质和遗传水平的许多独立研究收集的,具有来自非常不同的时间和维度尺度的信息;(ii)使用二元纵向回归模型中的相关检验和Benjamini-Hochberg-Yekutieli程序的组合,为混合类型的纵向数据制定特征筛选标准,㈢开发图形模型,使变量可以是连续和离散纵向变量的混合,节点代表变量,每条边表示两个相关变量对其他变量的依赖关系;以及(iv)通过在具有连续或离散响应和预测因子的高维向量的混合效应回归模型的框架下诉诸数据本身来研究每个预测因子的功能形式,所得到的过程允许用户同时确定每个预测器效应的形式为零、线性或非线性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hua Liang其他文献
A novel model-checking approach for dose-response relationships
一种新的剂量反应关系模型检查方法
- DOI:
10.1177/09622802211032695 - 发表时间:
2021-07 - 期刊:
- 影响因子:2.3
- 作者:
Shunyao Wu;Xinmin Li;Yu Xia;Hua Liang - 通讯作者:
Hua Liang
Disposable Electrochemical Aptasensor Array by Using in Situ DNA Hybridization Inducing Silver Nanoparticles Aggregate for Signal Ampli?cation
利用原位DNA杂交诱导银纳米粒子聚集进行信号放大的一次性电化学适体传感器阵列
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:7.4
- 作者:
Hui Li;Hua Liang;Weibing Qiang;Danke Xu - 通讯作者:
Danke Xu
On Cross-Coorelation of a Binary m-sequence of Period $2^{2k} − 1$ and Its Decimated Sequences by $ (2^{lk} + 1)/(2^l + 1)$
周期 $2^{2k} ≤ 1$ 的二进制 m 序列及其由 $(2^{lk} 1)/(2^l 1)$ 抽取的序列的互关联
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Hua Liang;Jinquan Luo;Yuansheng Tang - 通讯作者:
Yuansheng Tang
Nonlinear Systems Modeling Using LS-SVM with SMO-Based Pruning Methods
使用 LS-SVM 和基于 SMO 的剪枝方法进行非线性系统建模
- DOI:
10.1007/978-3-540-72383-7_73 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Changyin Sun;Jinya Song;Guofang Lv;Hua Liang - 通讯作者:
Hua Liang
Variance function additive partial linear models
方差函数加性偏线性模型
- DOI:
10.1214/15-ejs1080 - 发表时间:
2015 - 期刊:
- 影响因子:1.1
- 作者:
Yixin Fang;H. Lian;Hua Liang;D. Ruppert - 通讯作者:
D. Ruppert
Hua Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hua Liang', 18)}}的其他基金
Collaborative Research:Semiparametric ODE Models for Complex Gene Regulartory Networks
合作研究:复杂基因规则网络的半参数常微分方程模型
- 批准号:
1418042 - 财政年份:2014
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Generalized Partially Additive Models For High-Dimensional Data
高维数据的广义部分可加模型
- 批准号:
1440121 - 财政年份:2014
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Generalized Partially Additive Models For High-Dimensional Data
高维数据的广义部分可加模型
- 批准号:
1207444 - 财政年份:2012
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Nonparametric Smoothing for Data with Multiple Components
协作研究:多分量数据的非参数平滑
- 批准号:
1007167 - 财政年份:2010
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Development of Model Selection for Semiparametric Models in Analysis of High-Dimensional Data
高维数据分析中半参数模型模型选择的发展
- 批准号:
0806097 - 财政年份:2008
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400111 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400115 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400112 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344795 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344793 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344790 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344789 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344791 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344792 - 财政年份:2024
- 资助金额:
$ 14.62万 - 项目类别:
Standard Grant