Collaborative Research: CDS&E: Applied Algebraic Statistics through R
合作研究:CDS
基本信息
- 批准号:1622369
- 负责人:
- 金额:$ 10.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interface of applied algebraic geometry and statistics known as algebraic statistics abounds with fresh insight into old and new problems in practical data analysis. The fundamental connection stems from the realization that many statistical models are or can be identified with geometric structures amenable to algebraic investigation, enabling statisticians to draw from the great wealth of algebraic tools when solving statistical problems. Since this recognition, algebraic tools have found applications all over statistics, especially in contexts involving cross-classified data. Despite these advances, the use of algebraic methods in traditionally statistical areas of data analysis is still not mainstream, mostly because the methods involve kinds of mathematical computations previously unnecessary for data analyses and, consequently, not available in standard software. This work confronts this problem head-on by 1) fortifying connections between a free statistical computing environment popular among data analysts (R) and various software in the mathematics community through add-on packages created by the PIs and 2) implementing user-friendly interfaces to cutting-edge algebraic statistical methods enabled by the external software.The R package algstat and supporting packages will be further developed, strengthening connections to software used in algebraic statistics and providing functions and data structures for algebraic statistical methods that leverage those software. In year one of the project, the PIs and their teams will work on LattE and 4ti2, and Markov bases techniques for exact inference in loglinear, logistic, and Poisson regression models will be created and improved. In year two, the PIs and their teams will work on Bertini. Functions and data structures related to the numerical solution of systems of polynomial equations will be improved and expanded, and applications to phylogenetics will be considered. In year three, the PIs and their teams will work on Macaulay2, fortifying its connection to R and using it to enhance the mpoly package and adaptively inform the MCMC routines for exact inference in exponential family models enabled by the LattE and 4ti2 connections.
应用代数几何学和统计学的接口被称为代数统计学,对实际数据分析中的新老问题有着丰富的新见解。基本的联系源于认识到,许多统计模型是或可以确定几何结构服从代数调查,使统计人员在解决统计问题时,从大量的代数工具。自从认识到这一点以来,代数工具在统计学中得到了广泛的应用,特别是在涉及交叉分类数据的情况下。尽管取得了这些进展,但在传统的数据分析统计领域中使用代数方法仍然不是主流,主要是因为这些方法涉及以前数据分析不必要的数学计算,因此无法在标准软件中使用。这项工作通过以下方式正面解决了这个问题:1)通过PI创建的附加软件包,加强数据分析师(R)和数学社区中各种软件之间的自由统计计算环境之间的联系; 2)实现外部软件支持的尖端代数统计方法的用户友好界面。R软件包algstat和支持软件包将进一步开发,加强与代数统计中使用的软件的联系,并为利用这些软件的代数统计方法提供功能和数据结构。在项目的第一年,PI及其团队将致力于LattE和4 ti 2,并将创建和改进用于对数线性,逻辑和泊松回归模型精确推断的马尔可夫基础技术。在第二年,PI和他们的团队将工作的贝尔蒂尼。与多项式方程组数值解有关的函数和数据结构将得到改进和扩展,并将考虑在遗传学中的应用。在第三年,PI和他们的团队将致力于Macaulay 2,加强其与R的连接,并使用它来增强mpoly包,并自适应地通知MCMC例程,以便在LattE和4 ti 2连接支持的指数族模型中进行精确推断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruriko Yoshida其他文献
ヴィクトリア期の時代思潮における中世主義と古典主義
维多利亚时代思想中的中世纪主义和古典主义
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hisayuki Hara;Akimichi Takemura;Ruriko Yoshida;深貝保則 - 通讯作者:
深貝保則
A Markov basis for conditional test of common diagonal effect in quasi-independence model for two-way contingency tables
双向列联表准独立模型中共同对角效应条件检验的马尔可夫基
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:1.8
- 作者:
Hisayuki Hara;Akimichi Takemura;Ruriko Yoshida - 通讯作者:
Ruriko Yoshida
Asymptotic statistics and ultra hight frequency data
渐近统计和超高频数据
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ruriko Yoshida;Kenji Fukumizu;Chrysafis Vogiatzis;Nakahiro Yoshida - 通讯作者:
Nakahiro Yoshida
High resolution Opto-Electrophysiology: a new tool for analyzing brain functions
高分辨率光电生理学:分析大脑功能的新工具
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Misaki Takamori;Hideyuki Matsumoto;Ruriko Yoshida;Keiji Miura;Hideyuki Matsumoto - 通讯作者:
Hideyuki Matsumoto
Tropical Logistic Regression Model on Space of Phylogenetic Trees
- DOI:
10.1007/s11538-024-01327-8 - 发表时间:
2024-07-02 - 期刊:
- 影响因子:2.200
- 作者:
Georgios Aliatimis;Ruriko Yoshida;Burak Boyacı;James A. Grant - 通讯作者:
James A. Grant
Ruriko Yoshida的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruriko Yoshida', 18)}}的其他基金
Collaborative Research: Principal Component Analysis over Tree Spaces and Its Applications to Phylogenomics
合作研究:树空间的主成分分析及其在系统基因组学中的应用
- 批准号:
1916037 - 财政年份:2019
- 资助金额:
$ 10.04万 - 项目类别:
Interagency Agreement
Collaborative Research: CDS&E: Applied Algebraic Statistics through R
合作研究:CDS
- 批准号:
1714752 - 财政年份:2017
- 资助金额:
$ 10.04万 - 项目类别:
Interagency Agreement
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245380 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
- 批准号:
2307787 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 10.04万 - 项目类别:
Standard Grant














{{item.name}}会员




