Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring

合作研究:CDS

基本信息

  • 批准号:
    2245152
  • 负责人:
  • 金额:
    $ 49.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Radiofrequency cardiac ablation therapy – the use of heat delivered to destroy abnormal heart tissue that causes rhythm disorders (performed using catheters inserted into veins or arteries) - provides an effective and, compared to heart surgery, a less invasive treatment option. Unfortunately, as many as 50% of ablation patients experience the return of disease due to incomplete tissue ablation. Successful treatment requires continuous ablation lines that induce permanent thermal damage to the tissue, achieved by sufficient exposure of the tissue to high enough temperatures to ensure cell death. The investigative team’s expertise in heat transfer theory, image computing and visualization, biomedical modeling and simulation, and experimental validation will be leveraged to better understand the physiological mechanisms that govern the transfer of heat into biological tissues by modeling and quantifying tissue responses to thermal energy. This research will help characterize the thermal injury delivered to the heart tissue during therapy, and will, therefore, have the potential to evolve into a future tool to better guide and monitor cardiac ablation therapy. This project also features a synergistically integrated education and outreach program that will foster research opportunities for graduate and undergraduate students in computer science, biomedical engineering, mathematics, and imaging science at Rochester Institute of Technology and the University of Kansas. The team will also develop innovative hands-on workshops to inspire and educate K-12 students from underrepresented groups on biomedical computing and medicine. Successful treatment of cardiac arrhythmia via ablation therapy requires the delivery of continuous ablation patterns that induce permanent thermal damage to the tissue, achieved by sufficient exposure to cell death temperatures and above. However, temperature readings inside the beating heart are invasive and infeasible. Hence, intrinsic knowledge of the heat transfer mechanisms and their effects on the tissue (e.g., temperature distribution, lesion geometry, quantification of induced thermal damage) is critical to understanding tissue response to thermal energy. Moreover, to enable intra-operative thermal monitoring, rapid, interactive characterization and visualization of the thermal lesions is equally critical. To better understand the physiological mechanisms that govern heat transfer into biological tissues, this project will capitalize on the investigating team’s cross-disciplinary expertise spanning fundamental heat transfer theory, image computing and visualization, biomedical modeling and simulation, scientific computing, and experimental validation to develop an intelligent computational framework to model and quantify tissue response to thermal energy. To rapidly characterize and visualize the ablation lesions, the team will research computationally-efficient thermal damage reversibility metrics operating in concert with voxel-derived, high-order meshing methods, which allow for rapid quantification of tissue temperature and lesion characterization. Previously developed numerical verification techniques will be utilized to assess the performance of the developed ablation modeling framework. Lastly, this project will also leverage the team’s expertise in building experimental test beds featuring in vitro constructs and ex vivo tissue samples to compare model-predictions and experimental lesions using infrared imaging, temperature measurements, and tissue staining. The developed framework will be released to the scientific computing community for research and educational use.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
射频心脏消融术是一种有效的治疗方法,与心脏手术相比,它侵入性更小,利用热量来破坏引起心律失常的异常心脏组织(通过插入静脉或动脉的导管进行)。不幸的是,多达50%的消融患者由于组织消融不完全而复发。成功的治疗需要连续的烧蚀线,通过将组织充分暴露在足够高的温度下以确保细胞死亡,从而对组织造成永久性热损伤。研究小组在传热理论、图像计算和可视化、生物医学建模和仿真以及实验验证方面的专业知识,将通过建模和量化组织对热能的反应,更好地理解控制热量传递到生物组织的生理机制。这项研究将有助于表征治疗过程中传递到心脏组织的热损伤,因此,有可能发展成为未来更好地指导和监测心脏消融治疗的工具。该项目还具有协同整合的教育和推广计划,将为罗切斯特理工学院和堪萨斯大学的计算机科学、生物医学工程、数学和成像科学的研究生和本科生提供研究机会。该团队还将开发创新的实践研讨会,以激励和教育来自代表性不足群体的K-12学生学习生物医学计算和医学。通过消融疗法成功治疗心律失常需要持续消融模式,通过充分暴露于细胞死亡温度及以上来实现对组织的永久性热损伤。然而,心脏内部的温度读数是侵入性的,也是不可行的。因此,了解热传递机制及其对组织的影响(例如,温度分布、病变几何形状、诱导热损伤的量化)对于理解组织对热能的反应至关重要。此外,为了实现术中热监测,热病变的快速、交互式表征和可视化同样至关重要。为了更好地理解控制热传递到生物组织的生理机制,该项目将利用调查团队的跨学科专业知识,包括基础传热理论、图像计算和可视化、生物医学建模和仿真、科学计算和实验验证,开发一个智能计算框架来模拟和量化组织对热能的反应。为了快速表征和可视化消融病变,该团队将研究计算效率高的热损伤可逆性指标,该指标与体素衍生的高阶网格方法相结合,可以快速量化组织温度和病变特征。先前开发的数值验证技术将用于评估开发的烧蚀建模框架的性能。最后,该项目还将利用团队的专业知识,建立具有体外构建和离体组织样本的实验试验台,通过红外成像、温度测量和组织染色来比较模型预测和实验病变。开发的框架将发布给科学计算社区,供研究和教育使用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristian Linte其他文献

PO-718-08 PREDICTING TISSUE CONDUCTANCE CHANGES AND ABLATION LESION PATTERNS USING A QUASI-DYNAMIC PULSED FIELD ELECTROPORATION NUMERICAL MODEL FOR CARDIAC ABLATION
  • DOI:
    10.1016/j.hrthm.2022.03.1193
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Nishaki Mehta;Richard Simon;Kuldeep Shah;David E. Haines;Cristian Linte
  • 通讯作者:
    Cristian Linte

Cristian Linte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cristian Linte', 18)}}的其他基金

CDS&E: Collaborative Research: A Computational Framework for Reconstructing and Visualizing Myocardial Active Stresses
CDS
  • 批准号:
    1808530
  • 财政年份:
    2018
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245380
  • 财政年份:
    2023
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
  • 批准号:
    2307787
  • 财政年份:
    2023
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 49.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了