SHINE: Prediction of Solar Activity Using Non-linear Dynamo Models and Data Assimilation Approach
SHINE:使用非线性发电机模型和数据同化方法预测太阳活动
基本信息
- 批准号:1622341
- 负责人:
- 金额:$ 34.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This 3-year SHINE project is aimed at developing data assimilation techniques for physics-based predictions of the solar activity on the scale of the solar cycle. The project is expected to improve our modeling capabilities to predict the solar cycle, and to advance our knowledge about the solar dynamo and the nature of the solar cycle. The data assimilation techniques applied to the sophisticated dynamo models would benefit the broad solar physics community. The scientific outcome of this project would be important for the studies in the heliosphere, the Earth's upper atmosphere, and possibly climate in the long-term, and it would be beneficial for current and future space missions and society. The research plan of this 3-year SHINE project includes the following tasks: (i) investigate the sensitivity of model predictions to uncertainties in observational data for various data assimilation methods and various reduced dynamo models in a dynamical system formulation; (ii) develop procedures to estimate the model parameters, system state, and their uncertainties; verify and test data assimilation procedures by applying them to simulated data and previous solar cycle observations; (iii) using current observational data, calculate predictions of the sunspot number and total poloidal and toroidal magnetic field components for Cycle 25, and provide uncertainties and confidence intervals; and (iv) develop a data assimilation procedure for long-term synoptic forecasts of solar activity by using 2D dynamo models, synoptic magnetograms, and meridional flow measurements from the Solar Dynamics Observatory and ground-based synoptic networks such as GONG and SOLIS. The project is directly relevant to the NSF's SHINE program, because it will provide important knowledge about the global solar activity, which is the major source of high-energy disturbances in the solar, heliospheric, and interplanetary environment. Such knowledge is critical for accurate modeling and prediction of space weather conditions from the solar surface to the Earth and beyond. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.
这一为期3年的“阳光”项目旨在开发数据同化技术,以便在太阳周期尺度上对太阳活动进行基于物理学的预测。 该项目预计将提高我们预测太阳周期的建模能力,并提高我们对太阳发电机和太阳周期性质的认识。 应用于复杂发电机模型的数据同化技术将使广大的太阳物理学界受益。 该项目的科学成果将对日光层、地球高层大气以及可能的长期气候研究具有重要意义,并将有益于当前和未来的空间飞行任务和社会。 这个为期3年的SHINE项目的研究计划包括以下任务:(i)调查各种数据同化方法和动力系统公式中各种简化发电机模型的模式预测对观测数据中不确定性的敏感性;(ii)开发估计模式参数、系统状态及其不确定性的程序;通过将数据同化程序应用于模拟数据和以前的太阳周期观测,验证和测试这些程序; ㈢利用目前的观测数据,计算第25周期太阳黑子数目和总极向和环向磁场分量的预测值,并提供不确定性和置信区间;以及(iv)通过使用二维发电机模型、天气磁图和太阳动力学观测站和地面天气网络(如GONG和SOLIS)的纬向流测量值,开发用于太阳活动长期天气预报的数据同化程序。 该项目与NSF的SHINE计划直接相关,因为它将提供有关全球太阳活动的重要知识,这是太阳,日光层和行星际环境中高能扰动的主要来源。 这类知识对于准确建模和预测从太阳表面到地球及其以外的空间气象条件至关重要。 该项目的研究和EPO议程支持AGS部门在发现,学习,多样性和跨学科研究方面的战略目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irina Kitiashvili其他文献
Irina Kitiashvili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Combining Physics and Machine Learning-based Models for Full-Energy-Range Solar Energetic Particles Events Prediction
结合物理和基于机器学习的模型进行全能量范围太阳能高能粒子事件预测
- 批准号:
2204363 - 财政年份:2022
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
Development of solar radiation data assimilation method to improve the accuracy of rainfall prediction
开发太阳辐射数据同化方法提高降雨预报精度
- 批准号:
22K04336 - 财政年份:2022
- 资助金额:
$ 34.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: ANSWERS: Prediction of Geoeffective Solar Eruptions, Geomagnetic Indices, and Thermospheric Density Using Machine Learning Methods
合作研究:答案:使用机器学习方法预测地球有效太阳喷发、地磁指数和热层密度
- 批准号:
2149750 - 财政年份:2022
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
Collaborative Research: ANSWERS: Prediction of Geoeffective Solar Eruptions, Geomagnetic Indices, and Thermospheric Density Using Machine Learning Methods
合作研究:答案:使用机器学习方法预测地球有效太阳喷发、地磁指数和热层密度
- 批准号:
2149747 - 财政年份:2022
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
EAGER: EPCN: Computational Imaging of the Sky for Precise Prediction of Solar Variability
EAGER:EPCN:天空计算成像,用于精确预测太阳变率
- 批准号:
2235063 - 财政年份:2022
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
Construction of Solar Flare Prediction System Using Non-linear Force-Free Field Model of Solar Active Region
利用太阳活动区非线性无力场模型构建太阳耀斑预测系统
- 批准号:
22K03706 - 财政年份:2022
- 资助金额:
$ 34.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: ANSWERS: Prediction of Geoeffective Solar Eruptions, Geomagnetic Indices, and Thermospheric Density Using Machine Learning Methods
合作研究:答案:使用机器学习方法预测地球有效太阳喷发、地磁指数和热层密度
- 批准号:
2149748 - 财政年份:2022
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
I-Corps: Global solar irradiance forecasting with flexible prediction time horizons
I-Corps:具有灵活预测时间范围的全球太阳辐照度预测
- 批准号:
2123699 - 财政年份:2021
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
Understanding and realization of advanced prediction for solar explosions with the integrated model including from stellar convection zone to interplanetary space
从恒星对流区到行星际空间的综合模型对太阳爆炸高级预测的理解和实现
- 批准号:
21H04492 - 财政年份:2021
- 资助金额:
$ 34.35万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Harnessing the Data Revolution in Space Physics: Topological Data Analysis and Deep Learning for Improved Solar Eruption Prediction
利用空间物理学中的数据革命:拓扑数据分析和深度学习以改进太阳喷发预测
- 批准号:
2001670 - 财政年份:2020
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant