SCH: INT: Anesthesiology Control Tower: Forecasting Algorithms to Support Treatment (ACTFAST)

SCH:INT:麻醉控制塔:支持治疗的预测算法 (ACTFAST)

基本信息

  • 批准号:
    1622678
  • 负责人:
  • 金额:
    $ 59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

There is a significant public health concern in the United States regarding major complications and death following surgery. Forty million Americans undergo surgery yearly. Approximately five percent die within a year of their operation, and roughly ten percent suffer major in-hospital morbidity (e.g., stroke, heart attack, pneumonia, renal failure, wound infection). Early recognition of risk and appropriate management could often prevent or modify these adverse outcomes. We believe that this represents an exciting scientific opportunity. Modern intraoperative monitoring yields a wealth of data from thousands of operating rooms across the US. Integration and real-time analysis of these data streams has the potential to revolutionize perioperative care. We propose to develop, validate and assess machine-learning, forecasting algorithms that predict adverse outcomes for individual patients. The forecasting algorithms will be based on data derived from various sources, including the patient's electronic medical record, the array of physiological monitors in the operating room, and evidence-based scientific literature. These algorithms will facilitate patient-specific clinical decision support, utilizing an innovative approach of an anesthesiology control tower. The anesthesiology control tower for the operating room will be conceptually similar to an air traffic control tower for a busy airport. We are optimistic that the ambitious goal of developing forecasting algorithms for individual surgical patients can be realized, since members of our team have already developed and validated similar forecasting algorithms for critically ill hospital patients. Modifiable risk factors for adverse events could be detected early during surgery, allowing targeted interventions and preventive measures. The ACTFAST study will provide important information on the potential utility of incorporating forecasting algorithms into routine surgical care, including in under-resourced healthcare settings. This project will also yield important educational benefits. There will be tremendous learning for the students who help to develop and validate the forecasting algorithms. Furthermore, the control tower concept is a disruptive educational innovation, which will equip anesthesiology trainees with a new ability to provide simultaneous care to multiple surgical patients. It is notoriously difficult to construct high fidelity scientific models for individual humans, as we are complex biological systems. Ultimately, the success of this ambitious project, which engages interdisciplinary perspectives and applies sophisticated forecasting algorithms to clinical decision support, will have substantial scientific and clinical impact.Modern intraoperative monitoring yields a wealth of data from thousands of operating rooms across the United States. Integration and real-time analysis of these data streams has the potential to revolutionize perioperative care. The objective for this investigation is to exploit our experience in running innovative machine learning algorithms, including filtering and outcome-related models, in order to build forecasting algorithms tailored to individual surgical patients. Our central hypothesis is that with sufficient knowledge of patient characteristics coupled with repeated, high-fidelity time series data from the intraoperative electronic medical record, advanced models can be constructed for individual patients that will forecast risk for adverse postoperative outcomes. First, using a training dataset, we will apply data mining and machine-learning methods that we have previously validated to extract useful information from electronic health records and real-time physiological variables. We will develop algorithms using hybrid-learning techniques to combine the strength of non-parametric (generative) models, such as histogram and kernel density estimation, and parametric (discriminative) models, such as support vector machines, logistic regressions, and kernel machines to improve predictions of adverse perioperative outcomes. The goal is to deliver superior prediction quality, with good interpretability and high computational efficiency, that supports fast processing of big data. Second, using a testing dataset, we will validate the predictive accuracy of the developed algorithms, by determining the reliability in forecasting adverse outcomes. The developed algorithms will be tested for accuracy of their predictive performance. These evaluation methods include hold-out sampling, cross-validation, and bootstrap sampling. After being trained and tested, the performance of the developed algorithms will be additionally validated prospectively (out-of-sample performance), using standard measures of accuracy, precision and robustness. We envision that the developed algorithms will facilitate patient-specific clinical decision support, utilizing an innovative approach of an anesthesiology control tower, which will be conceptually similar to an air traffic control tower for a busy airport. The main contributions of this project will include: (1) new machine-learning algorithms for forecasting perioperative adverse events from heterogeneous, multi-scale, and high-dimensional data streams; (2) a clinical decision support system that identifies prognostic factors and suggests interventions based on novel feature ranking algorithms; and (3) a transformative approach to the education of the anesthesiology team and the paradigm of perioperative care. Successfully advancing real-time analytic methods and modeling for individual surgical patients, using heterogeneous and sparse data, would have tremendous scientific and societal impact.
在美国,手术后的主要并发症和死亡是一个重大的公共卫生问题。每年有4000万美国人接受手术。大约5%的人在手术后一年内死亡,大约10%的人患有严重的住院并发症(例如,中风、心脏病发作、肺炎、肾功能衰竭、伤口感染)。及早认识到风险和适当的管理往往可以防止或改变这些不利后果。我们相信,这代表着一个令人兴奋的科学机会。现代的术中监护产生了来自全美数千个手术室的大量数据。这些数据流的集成和实时分析有可能给围手术期护理带来革命性的变化。我们建议开发、验证和评估预测个别患者不良结果的机器学习和预测算法。预测算法将基于来自各种来源的数据,包括患者的电子病历、手术室的生理监测器阵列和基于证据的科学文献。这些算法将利用麻醉学控制塔的创新方法,促进针对患者的临床决策支持。手术室的麻醉控制塔在概念上类似于繁忙机场的空中交通控制塔。我们乐观地认为,为个别外科患者开发预测算法的雄心勃勃的目标可以实现,因为我们的团队成员已经为危重医院的患者开发并验证了类似的预测算法。可以在手术期间及早发现不良事件的可改变的危险因素,从而进行有针对性的干预和预防措施。ACTFAST的研究将提供有关将预测算法纳入常规外科护理的潜在效用的重要信息,包括在资源不足的医疗保健环境中。该项目还将产生重要的教育效益。对于帮助开发和验证预测算法的学生来说,他们将获得巨大的学习。此外,控制塔的概念是一项颠覆性的教育创新,它将使麻醉学实习生具备同时为多名外科患者提供护理的新能力。众所周知,为人类个体构建高保真的科学模型是非常困难的,因为我们是复杂的生物系统。最终,这个雄心勃勃的项目的成功,将涉及跨学科的视角,并将复杂的预测算法应用于临床决策支持,将产生重大的科学和临床影响。现代术中监测产生了来自全美数千个手术室的丰富数据。这些数据流的集成和实时分析有可能给围手术期护理带来革命性的变化。这项调查的目的是利用我们在运行创新的机器学习算法方面的经验,包括过滤和与结果相关的模型,以便建立针对个别手术患者的预测算法。我们的中心假设是,有了对患者特征的充分了解,再加上术中电子病历中重复的、高保真的时间序列数据,可以为个别患者构建先进的模型,预测术后不良结果的风险。首先,使用训练数据集,我们将应用数据挖掘和机器学习方法,我们之前已经过验证,可以从电子健康记录和实时生理变量中提取有用的信息。我们将开发使用混合学习技术的算法,将非参数(生成性)模型(如直方图和核密度估计)和参数(判别性)模型(如支持向量机、Logistic回归和核机器)的优势结合起来,以提高对不良围手术期结果的预测。其目标是提供卓越的预测质量,具有良好的可解释性和高计算效率,支持快速处理大数据。其次,使用测试数据集,我们将通过确定预测不利结果的可靠性来验证所开发算法的预测准确性。开发的算法将对其预测性能的准确性进行测试。这些评价方法包括坚持抽样、交叉验证和自举抽样。经过训练和测试后,开发的算法的性能将进一步进行前瞻性验证(样本外性能),使用准确度、精确度和稳健性的标准衡量标准。我们设想,开发的算法将利用麻醉学控制塔的创新方法,促进针对患者的临床决策支持,这在概念上类似于繁忙机场的空中交通控制塔。该项目的主要贡献将包括:(1)从异质、多尺度和高维数据流中预测围手术期不良事件的新机器学习算法;(2)基于新的特征排名算法识别预后因素并建议干预的临床决策支持系统;以及(3)麻醉学团队教育和围手术期护理范例的变革性方法。利用异质和稀疏的数据,成功地推进针对个别外科患者的实时分析方法和建模,将会产生巨大的科学和社会影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Avidan其他文献

Prevalence and predictors of exposure to disruptive behaviour in the operating room
  • DOI:
    10.1007/s12630-019-01333-8
  • 发表时间:
    2019-03-20
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Alexander Villafranca;Brett Hiebert;Colin Hamlin;Amy Young;Divya Parveen;Rakesh C. Arora;Michael Avidan;Eric Jacobsohn
  • 通讯作者:
    Eric Jacobsohn
In reply: Analysis of perioperative antibiotic administration in electronic medical records: correlations among patients addressed by analyzing control chart data using the batch means method

Michael Avidan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
  • 批准号:
    10102226
  • 财政年份:
    2024
  • 资助金额:
    $ 59万
  • 项目类别:
    EU-Funded
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10700105
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10601189
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 59万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 59万
  • 项目类别:
NRI: INT: Self-Assembly of Modular Robots Constructed using DNA: Modeling and Manufacturing Nanostructures with Graph Neural Networks and DNA Origami
NRI:INT:使用 DNA 构建的模块化机器人的自组装:使用图神经网络和 DNA 折纸建模和制造纳米结构
  • 批准号:
    2132886
  • 财政年份:
    2021
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了