SCH: INT: Reducing Traumatic Brain Injury Risk with Impact Compensation

SCH:INT:通过影响补偿降低创伤性脑损伤风险

基本信息

  • 批准号:
    1622741
  • 负责人:
  • 金额:
    $ 174.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Traumatic brain injury is a leading cause of death and disability in the United States. Over 1.7million people sustain a brain injury each year and make up one-third of all injuries seen in theemergency room. Developing rehabilitation and treatment strategies to manage this disease areimportant, but preventing the occurrence of brain trauma is also critical component to the solution.The goal of this proposal is to reduce the risk of traumatic brain injury through smart technologythat collects sensory data to predict and characterize head impact in real-time, optimizes protectivemechanisms based on those impact characteristics, and sends impact trauma attributes to a clinicaldatabase for further analysis and injury risk prediction. This technology will substantially improvetraumatic brain injury prevention and diagnosis in motor vehicle crashes, sports, and industrialaccidents. To accomplish this goal, fundamental research efforts include (1) real-time situationalmonitoring to predict when and how dangerous impacts are about to occur and (2) activeprevention mechanisms to reduce the risk of brain injury impact. Initial evaluation of thetechnology is in a sports setting, but the system components can be widely adaptive forimplementation in motor vehicles, industrial safety helmets, and living environments for theelderly.The research goals of this proposal are to (1) reduce the risk of traumatic brain injury throughadvanced situational monitoring, musculoskeletal activation, and impact-specific force reduction;and (2) to improve potential identification of head injury risk based on multiscale braindeformation modeling. These goals are accomplished by integrating four fundamental researchefforts. First, tracking and collision detection algorithms are developed based on radio frequency(RF) sensing, processing, and flexible antenna design. When used in conjunction with triaxialaccelerometers, gyroscopes, and magnetometers, these algorithms provide the sensing capabilitiesrequired to detect objects, capture directional velocity data of surrounding objects, and processdata in real-time to determine probabilities and characteristics of impending collision. Second,musculoskeletal clenching following auditory warning is investigated as a means of minimizinghead angular acceleration following head or body impact. The development of auditory warningcues and muscle clench strategies utilizes kinematic musculoskeletal modeling and human subjectstudies to identify required auditory cues and response times as well as muscle activationparameters that best mitigate head angular acceleration during a collision. Third, active forcereduction specific to impending impact characteristics are implemented using a unique controllableair-filled bladder. Optimal pressure and deflection characteristics of the bladder are based onimpact velocity and direction, and evaluated with a novel three-dimensional multiscale finiteelement model of the human head. This model incorporates anatomical variability in themicrostructures at the brain-skull interface, a region that is critical to predictions of head injury.The fourth fundamental research area uses the multiscale model to investigate the relationship ofhead impact force and acceleration to regional deformation of brain tissue upon impact. Thesestudies will be used to improve predictions of TBI risk from impact kinematics.
在美国,创伤性脑损伤是导致死亡和残疾的主要原因。每年有超过170万人遭受脑损伤,占急诊室所有损伤的三分之一。制定康复和治疗策略来控制这种疾病很重要,但预防脑外伤的发生也是解决方案的关键组成部分。该提案的目标是通过智能技术收集感官数据来实时预测和表征头部撞击,优化基于这些撞击特征的保护机制,并将撞击创伤属性发送到临床数据库以进行进一步分析和损伤风险预测,从而降低创伤性脑损伤的风险。这项技术将大大改善机动车碰撞、运动和工业事故中创伤性脑损伤的预防和诊断。为了实现这一目标,基础研究工作包括:(1)实时态势监测,以预测何时以及如何发生危险的撞击;(2)主动预防机制,以降低脑损伤撞击的风险。该技术的初步评估是在运动环境中进行的,但系统组件可以广泛适应机动车辆,工业安全帽和老年人生活环境的实施。本提案的研究目标是:(1)通过先进的情境监测、肌肉骨骼激活和减少撞击特定力来降低创伤性脑损伤的风险;(2)提高基于多尺度脑变形模型的颅脑损伤风险潜在识别。这些目标是通过整合四个基础研究工作来实现的。首先,基于射频(RF)传感、处理和柔性天线设计开发了跟踪和碰撞检测算法。当与三轴加速度计、陀螺仪和磁力计结合使用时,这些算法提供检测物体所需的传感能力,捕获周围物体的方向速度数据,并实时处理数据以确定即将发生碰撞的概率和特征。其次,研究了听觉警告后的肌肉骨骼握紧,作为最小化头部或身体撞击后的头部角加速度的一种手段。听觉警告线索和肌肉握紧策略的发展利用运动学肌肉骨骼建模和人体受试者研究来确定所需的听觉线索和响应时间以及肌肉激活参数,以最好地减轻碰撞期间头部角加速度。第三,针对即将到来的冲击特性,采用独特的可控充气气囊实现主动力诱导。膀胱的最佳压力和挠度特性基于冲击速度和方向,并通过一种新的三维多尺度人头有限元模型进行评估。该模型结合了脑-颅骨界面微观结构的解剖变异,这是预测头部损伤的关键区域。第四个基础研究领域采用多尺度模型研究头部冲击力和加速度与撞击时脑组织局部变形的关系。这些研究将用于改善从冲击运动学对TBI风险的预测。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanical characterization of the human pia-arachnoid complex
Spatial distribution of human arachnoid trabeculae
  • DOI:
    10.1111/joa.13186
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Benko, Nikolaus;Luke, Emma;Coats, Brittany
  • 通讯作者:
    Coats, Brittany
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Minor其他文献

Terrain Inclination Aided Three-dimensional Localization and Mapping for Outdoor Mobile Robot
户外移动机器人地形倾角辅助三维定位与建图
Bronchiolitis Obliterans: A Rare Complication of Stevens-Johnson Syndrome
  • DOI:
    10.1016/j.chest.2017.08.959
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Minor;Don Hayes;Richard Shell
  • 通讯作者:
    Richard Shell
Retrospective Analysis of Utility of Postbronchoscopy Chest Roentgenograms in the Pediatric Population
  • DOI:
    10.1378/chest.1993601
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicholas Mulhearn;Mark Minor;Kevin Maupin;Stephanie Thompson
  • 通讯作者:
    Stephanie Thompson

Mark Minor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Minor', 18)}}的其他基金

CHS: Small: Large Workspace Haptic Interaction for Mixed Reality Locomotion Interfaces
CHS:小型:混合现实运动界面的大型工作空间触觉交互
  • 批准号:
    1911194
  • 财政年份:
    2019
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Standard Grant
HCC: Medium: Collaborative Research: Haptic Display of Terrain Characteristics and its Application in Virtual and Physical Worlds
HCC:媒介:协作研究:地形特征的触觉显示及其在虚拟和物理世界中的应用
  • 批准号:
    1162617
  • 财政年份:
    2012
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Continuing Grant
Compliant Frame Modular Mobile Robotic Systems
兼容框架模块化移动机器人系统
  • 批准号:
    0308056
  • 财政年份:
    2003
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Continuing Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
  • 批准号:
    10102226
  • 财政年份:
    2024
  • 资助金额:
    $ 174.74万
  • 项目类别:
    EU-Funded
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
  • 批准号:
    2347604
  • 财政年份:
    2023
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Standard Grant
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10700105
  • 财政年份:
    2022
  • 资助金额:
    $ 174.74万
  • 项目类别:
SCH: INT: Context-Aware Micro-Interventions for Social Anxiety
SCH:INT:针对社交焦虑的情境感知微干预
  • 批准号:
    10601189
  • 财政年份:
    2022
  • 资助金额:
    $ 174.74万
  • 项目类别:
Quantifying the inboard transfer of deformation int he Northern Canadian Cordillera
量化加拿大北部科迪勒拉山脉向内变形传递
  • 批准号:
    517959-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 174.74万
  • 项目类别:
NRI: INT: Self-Assembly of Modular Robots Constructed using DNA: Modeling and Manufacturing Nanostructures with Graph Neural Networks and DNA Origami
NRI:INT:使用 DNA 构建的模块化机器人的自组装:使用图神经网络和 DNA 折纸建模和制造纳米结构
  • 批准号:
    2132886
  • 财政年份:
    2021
  • 资助金额:
    $ 174.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了