Workshop on Distance Geometry: Theory and Applications
距离几何研讨会:理论与应用
基本信息
- 批准号:1623007
- 负责人:
- 金额:$ 2.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the Workshop on Distance Geometry: Theory and Applications held at the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers University on July 26-29, 2016. Applications of distance geometry are widely visible in everyday life and include management of cellular telephone networks, drug synthesis, robotic automation in manufacturing, and architectural design. By bringing together scientists from diverse fields whose research involves distance geometry, the workshop has considerable potential to impact important applications while advancing related theory. The workshop will include four tutorial presentations, a poster session, and over 20 additional invited presentations. This will be the first workshop on distance geometry held in the United States. The workshop webpage is currently maintained at http://dimacs.rutgers.edu/Workshops/Distance/, which contains the workshop announcement and call for participation.The workshop will highlight important mathematical and computational challenges in distance geometry and draw connections to closely related mathematical problems in graph rigidity, semidefinite programming, and matrix completion, among others. The workshop is scheduled to involve leading researchers who are applying distance geometry to a wide range of scientific fields. In addition, the workshop will involve a large group of students and early-career researchers, and will create new resources that will be made available to introduce newcomers to the concepts and applications of distance geometry.
该奖项支持参加距离几何研讨会:理论与应用在中心举行的离散数学和理论计算机科学(DIMACS)在罗格斯大学于2016年7月26日至29日。距离几何的应用在日常生活中广泛可见,包括移动电话网络的管理,药物合成,制造业中的机器人自动化和建筑设计。通过汇集来自不同领域的科学家,他们的研究涉及距离几何,研讨会有相当大的潜力,影响重要的应用,同时推进相关理论。研讨会将包括四个教程演示,一个海报会议,和20多个额外的邀请演讲。这将是在美国举行的第一次关于距离几何的讲习班。研讨会的网页目前维护在http://dimacs.rutgers.edu/Workshops/Distance/,其中包含研讨会的公告和参与呼吁。研讨会将突出距离几何中重要的数学和计算挑战,并与图刚性,半定规划和矩阵完成等密切相关的数学问题建立联系。该讲习班计划邀请将距离几何应用于广泛科学领域的主要研究人员参加。此外,研讨会将涉及一大批学生和早期职业研究人员,并将创建新的资源,将提供给新人介绍距离几何的概念和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farid Alizadeh其他文献
A faster dual algorithm for the Euclidean minimum covering ball problem
- DOI:
10.1007/s10479-018-3123-5 - 发表时间:
2018-12-18 - 期刊:
- 影响因子:4.500
- 作者:
Marta Cavaleiro;Farid Alizadeh - 通讯作者:
Farid Alizadeh
A dual simplex-type algorithm for the smallest enclosing ball of balls
- DOI:
10.1007/s10589-021-00283-6 - 发表时间:
2021-05-26 - 期刊:
- 影响因子:2.000
- 作者:
Marta Cavaleiro;Farid Alizadeh - 通讯作者:
Farid Alizadeh
Farid Alizadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farid Alizadeh', 18)}}的其他基金
Optimization Over Positive or Sum-of-Square Functions with Applications to Constrained Approximation and Shape Constrained Learning
正函数或平方和函数的优化及其在约束逼近和形状约束学习中的应用
- 批准号:
0935305 - 财政年份:2009
- 资助金额:
$ 2.32万 - 项目类别:
Standard Grant
Optimization over Positive Polynomials and Moment Cones: an Algorithmic Study with Applications in Approximation Theory, Regression and Data Visualization
正多项式和矩锥的优化:近似理论、回归和数据可视化应用的算法研究
- 批准号:
0306558 - 财政年份:2003
- 资助金额:
$ 2.32万 - 项目类别:
Continuing Grant
Symmetric Cone Optimization Algorithmic and Structural Study Application Development
对称锥优化算法和结构研究应用程序开发
- 批准号:
9901991 - 财政年份:1999
- 资助金额:
$ 2.32万 - 项目类别:
Standard Grant
CAREER: Applications of Convex Programming in Combinatorial Optimization: A Mathematical, Algorithmic and Computational Study
职业:凸规划在组合优化中的应用:数学、算法和计算研究
- 批准号:
9501941 - 财政年份:1995
- 资助金额:
$ 2.32万 - 项目类别:
Standard Grant
相似海外基金
AF:Medium:RUI:Algorithmic Problems in Kinematic Distance Geometry
AF:Medium:RUI:运动距离几何中的算法问题
- 批准号:
2212309 - 财政年份:2022
- 资助金额:
$ 2.32万 - 项目类别:
Continuing Grant
CIF: Small: Combinatorial Inverse Problems in Distance Geometry
CIF:小:距离几何中的组合反问题
- 批准号:
1817577 - 财政年份:2018
- 资助金额:
$ 2.32万 - 项目类别:
Standard Grant
Using distance geometry algorithms to derive molecular conformational ensembles
使用距离几何算法导出分子构象系综
- 批准号:
8564-2011 - 财政年份:2015
- 资助金额:
$ 2.32万 - 项目类别:
Discovery Grants Program - Individual
Distance geometry and its applications via semidefinite programming
距离几何及其半定规划应用
- 批准号:
299121-2008 - 财政年份:2014
- 资助金额:
$ 2.32万 - 项目类别:
Discovery Grants Program - Individual
Using distance geometry algorithms to derive molecular conformational ensembles
使用距离几何算法导出分子构象系综
- 批准号:
8564-2011 - 财政年份:2014
- 资助金额:
$ 2.32万 - 项目类别:
Discovery Grants Program - Individual
Using distance geometry algorithms to derive molecular conformational ensembles
使用距离几何算法导出分子构象系综
- 批准号:
8564-2011 - 财政年份:2013
- 资助金额:
$ 2.32万 - 项目类别:
Discovery Grants Program - Individual
Using distance geometry algorithms to derive molecular conformational ensembles
使用距离几何算法导出分子构象系综
- 批准号:
8564-2011 - 财政年份:2012
- 资助金额:
$ 2.32万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Positive definite functions in distance geometry and combinatorics
合作研究:距离几何和组合学中的正定函数
- 批准号:
1101687 - 财政年份:2011
- 资助金额:
$ 2.32万 - 项目类别:
Standard Grant
Using distance geometry algorithms to derive molecular conformational ensembles
使用距离几何算法导出分子构象系综
- 批准号:
8564-2011 - 财政年份:2011
- 资助金额:
$ 2.32万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Positive definite functions in distance geometry and combinatorics
合作研究:距离几何和组合学中的正定函数
- 批准号:
1101688 - 财政年份:2011
- 资助金额:
$ 2.32万 - 项目类别:
Standard Grant