I/UCRC: University of Arizona Planning Grant: I/UCRC for Center for Intelligent Telemedicine
I/UCRC:亚利桑那大学规划拨款:I/UCRC 智能远程医疗中心
基本信息
- 批准号:1624488
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One in every five adults in the U.S. has experienced some form of mental illness including stress, anxiety, and depression. While most of these cases are mild to moderate disorders, nearly 10 million Americans per year suffer from severe mental illness that were developed from these originally less serious mental disorders. In certain scenarios, the diagnosis and treatment of mental disorders may be delayed or not possible due to situational circumstances (e.g., remote sites, disaster areas, military environments, ships at sea, or humanitarian assistance). The mental health expenditure in 2014 was $203 billion in the U.S. which constitutes 6.9% of all health-related spending, a level expected to be sustained for the next decade. The overall hospital share of mental health spending has dropped from 41% in 1986 to today's 22%, and is expected to continue throughout the next decade. While outpatient care is only half to one third of the cost of the inpatient expense, about 45% of the mental disorder patients have listed high cost as their main barrier to seeking mental disorder treatment. Digital technology-based mental healthcare is regarded as a natural and ultimate choice for outpatient settings due to its low cost, high accuracy and continuous monitoring and tracking capabilities. As such, enterprises are increasingly interested in intelligent tele-medicine because it is the backbone for a completely new market, namely ?digital wellness? that features the combination of digital technology and mental healthcare. The goal is to provide affordable and high quality mental healthcare. This requires new, trans-disciplinary research to devise medically effective and reasonable solutions. The Center for Intelligent Tele-Medicine (InTelMed) will devise and deploy biofeedback-control designs to integrate wearable sensors, data analysis, and prescribed intervention/treatment onto the same human smart service platform. From an end-user perspective, flexibility, fashion, and visibility are key form factors. From a technology development point of view, high accuracy (i.e., medical-grade data) and low power design, real-time data analysis algorithms, application and database interfaces are the critical components to create successful biofeedback-based products. Biofeedback-control designs, as pursued by InTelMed, have the potential to improve behavioral health for our nation and drastically cut total outpatient mental healthcare costs, which constitutes 62% of the overall mental healthcare spending. InTelMed will not only advance science & technology in psychology and physiology, but will also accelerate both knowledge and intellectual property transfer to industry by working closely with the InTelMed Center members. Moreover, for Corporate America to retain a competitive edge as it emerges into the 21st century, it is essential to prepare students to become a desirable workforce: The majority of jobs in an increasingly complex and fast-paced society require knowledge and skills that stem from a quality college education. As such, InTelMed will recruit students from a broad background by engaging them in the biofeedback-controlled sensor technology research, introducing them to internships at member companies and organizations, and expose them to visit and present their work at scientific conferences and workshops. InTelMed will partner with Center members and local and national outreach programs to broaden participation of underrepresented minorities and women in particular. The Center for Intelligent Tele-Medicine (InTelMed) is committed to research & development in intelligent biofeedback-controlled monitoring and intervening wearable sensor technologies. In particular, InTelMed is concerned with physiological and psychological status and change identification through real-time data acquisition, mining, and analysis. Moreover, the Center focuses on the mitigation of physiological and psychological changes through biofeedback-control for real-time management and intervention. This requires a deep understanding in neurology, mechanisms of stress development, emotion changes, and physiological variations. As such, InTelMed relies on trans-disciplinary collaboration including psychology, physiology, biomedical and electrical engineering, and computer science. Lastly, the Center focuses also on the infusion of newly developed technologies into relevant user groups, such as patients, athletes, soldiers, firefighters, policemen, pilots, astronauts, and business professionals who work in stressful environments. Continued advances in mobile platform hardware (e.g., smartphones and smart watches) have increased the capability to provide high quality physiology data, local real-time data analysis, and robust connectivity. Such handheld capability is of significant interest to the field of mental disorder treatment and stress management. Inherent portability, connectivity, and affordability would allow use by minimally trained personnel and deployment to areas heretofore considered inaccessible or impractical. Software will be essential for enabling real-time evaluations, tele-diagnosis, and biofeedback-controlled interventions. Biofeedback-controlled real-time intervention - paired with wearable sensor technologies, prescribed treatment, and data analysis - forms the backbone of "digital wellness", i.e., digital technology-based mental healthcare. Specifically, biofeedback-controlled intervention will help: - Improve accuracy and efficiency: by harnessing new technologies, such as modular low-power wearable sensors, mobile platforms, and cloud or server computing performance, including, but not limited to, communication reliability, data security, and energy efficiency to maintain cutting-edge digital wellness infrastructures. - Manage scalability and complexity: by creating a network of mental healthcare through automatic biofeedback controls and precision/custom-interventions that can help hundreds of thousands of patients simultaneously. - Provide adaptability and agility: by ensuring adaptive and real-time responses to react promptly to patient needs. In support of the above, InTelMed engages the following emerging technologies as the essential prerequisites for digital wellness: 1. Biofeedback-controlled monitoring and intervening wearable sensor technologies. 2. Physiological and psychological status and change identification through real-time data acquisition, mining, and analysis. 3. Analysis of physiological and psychological changes both in the absence and presence of substance use (e.g., medications, drugs, alcohol), and due to stress. 4. Mitigation of physiological and psychological changes through biofeedback for real-time management and intervention. 5. Cloud-based temporal analysis and correlation models to evaluate the impact of treatments, work environments, team interactions, and environmental changes on the physiological and psychological health and performance. 6. Clinical coach intervention with patients via mobile health technologies to ensure improved wellness through behavioral change. 7. Coaching and training program designs for athletes, soldiers, firefighters, policemen, pilots, astronauts, and business professionals who work in stressful environments. The charter of InTelMed may serve as an exemplar for other fields of healthcare, such as, but not limited to, ambulatory care, emergency care, intensive care, remote monitoring and home care, and primary care.
在美国,每五个成年人中就有一个经历过某种形式的精神疾病,包括压力、焦虑和抑郁。虽然这些病例中的大多数是轻度到中度的精神障碍,但每年有近1000万美国人患有从这些原本不太严重的精神障碍发展而来的严重精神疾病。在某些情况下,由于具体情况(如偏远地点、灾区、军事环境、海上船只或人道主义援助),精神障碍的诊断和治疗可能会延迟或无法进行。2014年,美国的心理健康支出为2030亿美元,占所有健康相关支出的6.9%,这一水平预计将在未来十年保持下去。医院在精神卫生支出中所占的份额已从1986年的41%下降到今天的22%,预计这一趋势将在今后十年持续下去。虽然门诊费用仅为住院费用的一半至三分之一,但约45%的精神障碍患者将高昂的费用列为寻求精神障碍治疗的主要障碍。基于数字技术的精神卫生保健因其低成本、高准确性和持续监测和跟踪能力而被视为门诊设置的自然和最终选择。因此,企业对智能远程医疗越来越感兴趣,因为它是一个全新市场的支柱,即?数字健康?它的特点是数字技术和精神保健相结合。目标是提供负担得起的高质量精神保健。这需要新的、跨学科的研究来设计医学上有效和合理的解决方案。智能远程医疗中心(InTelMed)将设计和部署生物反馈控制设计,将可穿戴传感器、数据分析和处方干预/治疗集成到同一个人类智能服务平台上。从最终用户的角度来看,灵活性、时尚和可见性是关键的形式因素。从技术开发的角度来看,高精度(即医疗级数据)和低功耗设计、实时数据分析算法、应用程序和数据库接口是创建成功的基于生物反馈的产品的关键组成部分。正如InTelMed所追求的那样,生物反馈控制设计有可能改善我们国家的行为健康,并大幅削减门诊精神保健费用,这占精神保健总支出的62%。InTelMed不仅将推进心理学和生理学方面的科学技术,还将通过与InTelMed中心成员的密切合作,加速知识和知识产权向工业的转移。此外,美国企业要想在进入21世纪时保持竞争优势,就必须让学生成为理想的劳动力:在一个日益复杂和快节奏的社会中,大多数工作都需要来自高质量大学教育的知识和技能。因此,InTelMed将招收具有广泛背景的学生,让他们参与生物反馈控制传感器技术的研究,向他们介绍成员公司和组织的实习机会,并让他们在科学会议和研讨会上参观和展示他们的工作。InTelMed将与中心成员以及地方和国家外展项目合作,扩大代表性不足的少数民族特别是妇女的参与。智能远程医疗中心(InTelMed)致力于研究和开发智能生物反馈控制监测和干预可穿戴传感器技术。特别是,InTelMed通过实时数据采集、挖掘和分析,关注生理和心理状态以及变化识别。此外,该中心注重通过生物反馈控制来缓解生理和心理变化,进行实时管理和干预。这需要对神经学、压力发展机制、情绪变化和生理变化有深刻的理解。因此,InTelMed依赖于跨学科的合作,包括心理学、生理学、生物医学和电子工程以及计算机科学。最后,该中心还注重将新开发的技术注入相关用户群体,如病人、运动员、士兵、消防员、警察、飞行员、宇航员和在压力环境中工作的商业专业人员。移动平台硬件(如智能手机和智能手表)的不断进步提高了提供高质量生理数据、本地实时数据分析和强大连接的能力。这种手持能力对精神障碍治疗和压力管理领域具有重要意义。固有的便携性、连接性和可负担性将允许最低限度的训练人员使用,并将其部署到迄今为止被认为无法进入或不切实际的地区。软件对于实现实时评估、远程诊断和生物反馈控制干预至关重要。生物反馈控制的实时干预——与可穿戴传感器技术、处方治疗和数据分析相结合——构成了“数字健康”的支柱,即基于数字技术的心理健康。具体来说,生物反馈控制干预将有助于:-提高准确性和效率:通过利用新技术,如模块化低功耗可穿戴传感器、移动平台和云或服务器计算性能,包括但不限于通信可靠性、数据安全性和能源效率,以维持尖端的数字健康基础设施。-管理可扩展性和复杂性:通过自动生物反馈控制和精确/定制干预创建一个精神卫生保健网络,可以同时帮助数十万患者。-提供适应性和敏捷性:通过确保适应性和实时响应,及时对患者需求作出反应。为了支持上述,InTelMed采用以下新兴技术作为数字健康的基本先决条件:生物反馈控制监测和干预可穿戴传感器技术。2. 通过实时数据采集、挖掘和分析,识别生理和心理状态及其变化。3. 分析在没有和存在物质使用(例如,药物、毒品、酒精)和由于压力造成的生理和心理变化。4. 通过生物反馈进行实时管理和干预,缓解生理和心理变化。5. 基于云的时间分析和相关模型,以评估治疗、工作环境、团队互动和环境变化对生理和心理健康和表现的影响。6. 通过移动医疗技术对患者进行临床指导干预,以确保通过改变行为改善健康状况。7. 为运动员、士兵、消防员、警察、飞行员、宇航员和在压力环境下工作的商务人士设计的教练和培训计划。InTelMed的章程可作为其他医疗保健领域的典范,例如但不限于流动护理、紧急护理、重症监护、远程监测和家庭护理以及初级保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Fink其他文献
Low-thrust mission trade studies with parallel, evolutionary computing
通过并行进化计算进行低推力任务权衡研究
- DOI:
10.1109/aero.2006.1656038 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Seungwon Lee;Ryan P. Russell;Wolfgang Fink;R. Terrile;A. Petropoulos;P. V. Allmen - 通讯作者:
P. V. Allmen
Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance
自动化全局特征分析器 - 可分级侦察的驱动程序
- DOI:
10.1109/aero.2008.4526422 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Wolfgang Fink;A. Datta;J. Dohm;M. Tarbell;Farrah M. Jobling;R. Furfaro;J. Kargel;D. Schulze‐Makuch;V. Baker - 通讯作者:
V. Baker
Fluorescence characteristics of the fuel tracer 1-methylnaphthalene for the investigation of equivalence ratio and temperature in an oxygen-containing environment
用于含氧环境中当量比和温度研究的燃料示踪剂1-甲基萘的荧光特性
- DOI:
10.1007/s00340-019-7236-6 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
U. Retzer;Wolfgang Fink;T. Will;S. Will;L. Zigan - 通讯作者:
L. Zigan
Robotic lake lander test bed for autonomous surface and subsurface exploration of Titan lakes
用于泰坦湖自主地表和地下勘探的机器人湖泊着陆器测试台
- DOI:
10.1109/aero.2012.6187056 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Wolfgang Fink;M. Tuller;Alexander D. Jacobs;Ramaprasad Kulkarni;M. Tarbell;R. Furfaro;Victor R. Baker - 通讯作者:
Victor R. Baker
Statistical mechanics calculation of Vapnik-Chervonenkis bounds for perceptrons
感知器 Vapnik-Chervonenkis 界限的统计力学计算
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
A. Engel;Wolfgang Fink - 通讯作者:
Wolfgang Fink
Wolfgang Fink的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Fink', 18)}}的其他基金
PFI:BIC Making Full Use of the High-Resolution Image Capability of Smartphones to Collect Data through Ophthalmic Devices for Smart Mobile- and Tele-Health
PFI:BIC充分利用智能手机的高分辨率图像功能,通过眼科设备收集数据,实现智能移动和远程医疗
- 批准号:
1430062 - 财政年份:2014
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
EA: Upgrading the Geophysics Computing Facility at Arizona State University
EA:升级亚利桑那州立大学的地球物理计算设施
- 批准号:
2348594 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
EA: Upgrade of the Laser Heating System in the High-Pressure Diamond-Anvil Cell Laboratory at Arizona State University
EA:亚利桑那州立大学高压金刚石砧室实验室激光加热系统升级
- 批准号:
2335071 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Graduate Industrial Hygiene Training Program Grant, University of Arizona
亚利桑那大学研究生工业卫生培训计划补助金
- 批准号:
10730704 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Support for University of Arizona Dendrochronological Laboratory
支持亚利桑那大学树木年代学实验室
- 批准号:
2318888 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
IUCRC Phase I Arizona State University: Center for Intelligent, Distributed, Embedded, Applications and Systems (IDEAS)
IUCRC 第一阶段亚利桑那州立大学:智能、分布式、嵌入式、应用和系统中心 (IDEAS)
- 批准号:
2231620 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
IUCRC Phase II Arizona State University: Center for Accelerated Real Time Analytics (CARTA)
IUCRC 第二阶段亚利桑那州立大学:加速实时分析中心 (CARTA)
- 批准号:
2311026 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
MARC Biomedical Research and Training Program at the University of Arizona
亚利桑那大学 MARC 生物医学研究和培训项目
- 批准号:
10629764 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
IUCRC Phase II Arizona State University Site: Center for Efficient Vehicles and Sustainable Transportation Systems (EVSTS)
IUCRC 第二期亚利桑那州立大学网站:高效车辆和可持续交通系统中心 (EVSTS)
- 批准号:
2137295 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Multicollector – Inductively Coupled Plasma – Mass Spectrometer at the University of Arizona for Earth and Planetary Science Research, Education and Outre
MRI:在亚利桑那大学购买多接收器 — 电感耦合等离子体 — 质谱仪,用于地球和行星科学研究、教育和外展
- 批准号:
2214700 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
MPS-Ascend: Hadronic Physics at Arizona State University
MPS-Ascend:亚利桑那州立大学的强子物理学
- 批准号:
2213292 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Fellowship Award