Adhesion, Friction and Lubrication in Polymeric and Biological Systems
聚合物和生物系统中的粘附、摩擦和润滑
基本信息
- 批准号:1624569
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:Fundamental studies of adhesion, friction and lubrication are important for understanding cell adhesion, colloidal stabilization, nanomolding, nanofabrication, and drug delivery. Many biological systems demonstrate superior adhesion and lubrication properties; for example, cartilage in human joints can withstand pressures on the order of ten atmospheres and have remarkably low friction coefficients. A unique feature of these biomaterials is that they consist of bio-macromolecules with charged groups. This award supports research and training of graduate students in modern analytical and computational methods with application to adhesion, friction and lubrication in biological and polymeric systems. The main goal of this research is to develop a fundamental understanding of the role of electrostatic interactions in adhesion and friction in biological and biomimetic polymeric systems. This will be achieved through a synergistic approach combining theoretical and computational techniques. The predictions of the theoretical models will be tested in computer simulations and verified experimentally through collaboration with experimental research groups in the US. This project will have an impact on science and technology of materials design with desired adhesive and lubricating properties. This project will also provide special opportunities for involvement of graduate and undergraduate students in cutting-edge research. Mentoring of students is integrated into every aspect of the research. Graduate students will work with undergraduate students in physics, chemistry or chemical engineering, as well as with talented high school students. This experience will prepare them for future STEM careers.TECHNICAL SUMMARY:Many biological systems demonstrate superior adhesion and lubrication properties. A unique feature of these biomaterials is that they consist of bio-macromolecules with ionizable groups. In aqueous solutions, properties of these materials are influenced by electrostatic interactions between ionized groups, by interactions with surrounding media, and by the ionic strength of the solutions. The main goal of this research is to understand the specific role of electrostatic interactions on adhesion and lubrication in biological and polymeric systems. This will be achieved through a combination of molecular dynamics simulations, self-consistent field calculations, and scaling analysis. These techniques will be used to develop a model of lubrication for the glycoprotein-collagen network layer covering cartilage surfaces. Theory and simulations will be used to study the system's static and dynamic properties as a function of salt concentration, solution pH, fraction of charged groups, molecular architecture, and sliding velocity. The overarching objective of this research will be to understand the effect of dielectric discontinuity on adhesion and friction at the nanoscale. The predictions of the theoretical models will be tested in computer simulations and verified experimentally through collaboration with experimental research groups in the US. This project will have an impact on the science and technology of materials designed with desired adhesive and lubricating properties. The proposed research will also offer special opportunities for involvement of graduate and undergraduate students in cutting-edge research. Mentoring students is integrated into every aspect of the proposed research. The results of the proposed research will be incorporated into graduate level and special topics courses.
非技术性总结:粘附、摩擦和润滑的基础研究对于理解细胞粘附、胶体稳定、纳米成型、纳米纤维和药物递送非常重要。许多生物系统表现出上级粘附和润滑特性;例如,人类关节中的软骨可以承受大约10个大气压的压力,并且具有非常低的摩擦系数。这些生物材料的一个独特特征是它们由具有带电基团的生物大分子组成。该奖项支持研究生在现代分析和计算方法方面的研究和培训,并将其应用于生物和聚合物系统中的粘附,摩擦和润滑。本研究的主要目标是发展一个基本的了解静电相互作用在生物和仿生聚合物系统中的粘附和摩擦的作用。这将通过理论和计算技术相结合的协同方法来实现。理论模型的预测将在计算机模拟中进行测试,并通过与美国实验研究小组的合作进行实验验证。该项目将对材料设计的科学和技术产生影响,并具有所需的粘合和润滑性能。该项目还将为研究生和本科生参与尖端研究提供特殊机会。学生的指导是融入研究的各个方面。研究生将与物理,化学或化学工程专业的本科生以及有才华的高中生一起工作。这些经验将为他们未来的STEM职业生涯做好准备。技术总结:许多生物系统表现出上级粘附和润滑性能。 这些生物材料的一个独特特征是它们由具有可电离基团的生物大分子组成。在水溶液中,这些材料的性质受到电离基团之间的静电相互作用、与周围介质的相互作用以及溶液的离子强度的影响。本研究的主要目标是了解静电相互作用在生物和聚合物系统中对粘附和润滑的具体作用。这将通过结合分子动力学模拟,自洽场计算和标度分析来实现。这些技术将用于开发覆盖软骨表面的糖蛋白-胶原网络层的润滑模型。理论和模拟将被用来研究系统的静态和动态特性作为盐浓度,溶液pH值,带电基团的分数,分子结构和滑动速度的函数。这项研究的首要目标将是了解介电不连续性对纳米尺度下粘附力和摩擦力的影响。理论模型的预测将在计算机模拟中进行测试,并通过与美国实验研究小组的合作进行实验验证。该项目将对设计具有所需粘合和润滑性能的材料的科学和技术产生影响。拟议的研究还将为研究生和本科生参与尖端研究提供特殊机会。指导学生被纳入拟议研究的各个方面。拟议的研究结果将纳入研究生水平和专题课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrey Dobrynin其他文献
Andrey Dobrynin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrey Dobrynin', 18)}}的其他基金
DMREF: Collaborative Research: Strain Adaptive Materials
DMREF:合作研究:应变自适应材料
- 批准号:
2049518 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Strain Adaptive Materials
DMREF:合作研究:应变自适应材料
- 批准号:
1921923 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
2012 Colloidal Macromolecular and Polyelectrolyte Solutions GRC
2012胶体高分子及聚电解质溶液GRC
- 批准号:
1205287 - 财政年份:2012
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
Theory and Computer Simulations of Polyampholyte-Polyelectrolyte Complexes
聚两性电解质-聚电解质复合物的理论和计算机模拟
- 批准号:
0305203 - 财政年份:2003
- 资助金额:
$ 25.43万 - 项目类别:
Continuing Grant
相似海外基金
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Investigation of lubrication properties and low friction mechanism by solid lubricant aiming utilization at elevated temperature space
研究固体润滑剂的润滑性能和低摩擦机理,以高温空间利用为目标
- 批准号:
19K15442 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Model Development of mesoscale simulation on friction and wear of Boundary lubrication
边界润滑摩擦磨损细观模拟模型开发
- 批准号:
20K04245 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of hydration lubrication mechanism by friction measurement and in-situ observation of internal structure of nanometer-thick gel thin films
通过摩擦测量和纳米厚凝胶薄膜内部结构的原位观察阐明水化润滑机制
- 批准号:
20H02056 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ACQUISITION OF A TRIBOLOGICAL FACILITY FOR THE ANALYSES OF FRICTION, WEAR, AND LUBRICATION OF GEO-SYSTEMS
购买摩擦学设备来分析地球系统的摩擦、磨损和润滑
- 批准号:
1940857 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
I-Corps Teams: Compression and friction properties of lubricants in boundary lubrication
I-Corps 团队:边界润滑中润滑剂的压缩和摩擦特性
- 批准号:
1903211 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
Control of Friction and Lubrication using Redox-Active Surface Monolayers
使用氧化还原活性表面单层控制摩擦和润滑
- 批准号:
2355963 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Studentship
Modulating the Adhesion, Friction and Lubrication Characteristics of Few-Atom Thick Materials in Aqueous Environment over Several Length Scales
在多个长度尺度上调节水环境中少原子厚材料的粘附、摩擦和润滑特性
- 批准号:
1904216 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
Development of lubrication system for friction reduction using self-assembled nanotexture
使用自组装纳米结构开发减少摩擦的润滑系统
- 批准号:
18K13676 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
2016 Gordon Research Conference on Tribology: Scientific Advancements for Critical Applications in Friction, Lubrication, and Wear; Lewiston, Maine; June 26 - July 1, 2016
2016 年戈登摩擦学研究会议:摩擦、润滑和磨损关键应用的科学进展;
- 批准号:
1642036 - 财政年份:2016
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant