I/UCRC: Phase I: Computing and Genomics-An Essential Partnership for Biology Breakthroughs (CCBGM)

I/UCRC:第一阶段:计算和基因组学 - 生物学突破的重要合作伙伴 (CCBGM)

基本信息

项目摘要

The application of genomics across the life sciences industries is currently challenged by an inadequate ability to generate, interpret, and apply genomic data quickly and accurately for a wide variety of applications. Major Innovations in the applicability, timeliness, efficiency, and accuracy of computational genomic methods are needed, and these innovations will develop best when an interdisciplinary team of scientists, engineers, and physicians from academia and industry, spanning computer systems, health care/pharmaceuticals, and life sciences, work together. The University of Illinois at Urbana-Champaign (UIUC) and the Mayo Clinic are building on their longstanding collaboration to form the Center for Computational Biotechnology and Genomic Medicine (CCBGM), which will bring together their excellence in computing, genomic biology, and patient-specific individualized medicine. Working closely with industry, the CCBGM's multidisciplinary teams will use the power of computational genomics to advance pressing societal issues, such as enabling patient-specific cancer treatment, understanding and modifying microbial communities in diverse environments related to human health and agriculture, and supporting humanity's rapidly expanding need for food by improving the efficiency of plant and animal agriculture. The CCBGM will leverage UIUC's long-standing prowess in large-scale parallel systems, big data analytics, and hardware and software system design, to develop new technologies that enable future genomic breakthroughs. A key element of the Center's vision is to advance breakthroughs at the interface of biology and computing to transform health-care delivery while enhancing efforts that focus on the health science needs of underrepresented minorities.The CCBGM will bring together an interdisciplinary team to address the colossal genomic data challenge. Academia/industry partnerships will enhance research, education, and entrepreneurship while performing important technology transfer. The Center will achieve transformational computing innovations on three fronts. (1) It will innovate computing and data management to deal with issues of scaling to the ever-growing volume, velocity, and variety of genomic data. It will concentrate initially on scaling the computation of epistatic interactions (interactions between two or more genes or DNA variants) in genome-wide association study data, generating lists of genomic features that are maximally predictive of phenotypes, and information-compression algorithms for genomic data storage and transfer. (2) It will revolutionize the generation of actionable intelligence from multimodal structured and unstructured data, to generate knowledge from big data. The emphasis will be on the processing and integration of genomic and multi-omic data, and on the merging of unstructured phenotypic data with information from curated data sources (e.g., electronic medical records, annotation databases). The integration of these diverse data types will improve discovery research, predictive genomics, diagnostics, prognostics, and theranostics. Application areas include targeted cancer therapy, pharmacogenomics, crop improvement, and predictive microbiome analysis. (3) It will achieve systems innovation by designing computer systems specially suited for computational genomics, providing unprecedented speed and energy efficiency while preserving the accuracy of the analytics. The systems will be used to quantify and improve the accuracy of detecting genomic variation and, more generally, to optimize computing architectures for the execution of genome analysis workflows.
基因组学在生命科学行业的应用目前面临着能力不足的挑战,无法快速准确地为各种应用生成、解释和应用基因组数据。需要在计算基因组方法的适用性、及时性、效率和准确性方面进行重大创新,当来自学术界和工业界的科学家、工程师和医生组成的跨学科团队合作时,这些创新将得到最好的发展,这些跨学科团队横跨计算机系统、医疗保健/制药和生命科学。伊利诺伊大学香槟分校(UIUC)和梅奥诊所(Mayo Clinic)正在长期合作的基础上成立计算生物技术和基因组医学中心(CCBGM),该中心将把他们在计算、基因组生物学和患者个性化医学方面的卓越表现结合在一起。CCBGM的多学科团队将与业界密切合作,利用计算基因组学的力量推进紧迫的社会问题,例如实现针对患者的癌症治疗,了解和修改与人类健康和农业相关的不同环境中的微生物群落,并通过提高动植物农业的效率来支持人类迅速扩大的食品需求。CCBGM将利用UIUC在大规模并行系统、大数据分析以及硬件和软件系统设计方面的长期实力,开发使未来基因组突破成为可能的新技术。该中心愿景的一个关键要素是推动生物学和计算机接口的突破,以改变卫生保健提供,同时加强侧重于代表不足的少数民族的卫生科学需求的努力。CCBGM将汇集一个跨学科团队,以应对巨大的基因组数据挑战。学术界/产业界的伙伴关系将加强研究、教育和创业,同时进行重要的技术转让。该中心将在三个方面实现变革性的计算创新。(1)它将创新计算和数据管理,以应对不断增长的基因组数据的数量、速度和多样性的扩展问题。它最初将集中于全基因组关联研究数据中上位性相互作用(两个或更多基因或DNA变体之间的相互作用)的计算,生成最大限度地预测表型的基因组特征列表,以及用于基因组数据存储和传输的信息压缩算法。(2)它将彻底改变从多模式结构化和非结构化数据生成可操作情报的方式,从而从大数据生成知识。重点将放在处理和整合基因组和多基因组数据,以及将非结构化表型数据与来自经过管理的数据来源(例如,电子病历、注释数据库)的信息合并。这些不同数据类型的集成将改进发现研究、预测基因组学、诊断、预后和治疗。应用领域包括靶向癌症治疗、药物基因组学、作物改良和预测性微生物组分析。(3)它将通过设计专门适用于计算基因组学的计算机系统来实现系统创新,提供前所未有的速度和能源效率,同时保持分析的准确性。这些系统将用于量化和提高检测基因组变异的准确性,更广泛地说,用于优化执行基因组分析工作流程的计算架构。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BayesPerf: minimizing performance monitoring errors using Bayesian statistics
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ravishankar Iyer其他文献

717 MICROBIOTA IN STOOL ARE SUPERIOR TO SALIVA IN DIFFERENTIATING CIRRHOSIS AND HEPATIC ENCEPHALOPATHY USING ARTIFICIAL INTELLIGENCE APPROACHES
  • DOI:
    10.1016/s0016-5085(21)02616-0
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Krishnakant Saboo;Nikita Petrakov;Andrew Fagan;Masoumeh Sikaroodi;Chathur Acharya;Sara Mcgeorge;Patrick M. Gillevet;Ravishankar Iyer;Jasmohan S. Bajaj
  • 通讯作者:
    Jasmohan S. Bajaj
458 ARTIFICIAL INTELLIGENCE TECHNIQUES DEMONSTRATE BETTER PREDICTION FOR 90-DAY READMISSION AND DEATH IN WOMEN THAN MEN WITH CIRRHOSIS.
  • DOI:
    10.1016/s0016-5085(20)33859-2
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Krishnakant Saboo;Chang Hu;K. Rajender Reddy;Jacqueline G. O'Leary;Puneeta Tandon;Florence Wong;Guadalupe Garcia-Tsao;Patrick S. Kamath;Jennifer C. Lai;Scott W. Biggins;Michael B. Fallon;Paul J. Thuluvath;Ram Subramanian;Benedict Maliakkal;Hugo E. Vargas;Leroy Thacker;Ravishankar Iyer;Jasmohan S. Bajaj
  • 通讯作者:
    Jasmohan S. Bajaj

Ravishankar Iyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ravishankar Iyer', 18)}}的其他基金

PPoSS: Planning: Inflight Analytics to Control Large-Scale Heterogeneous Systems
PPoSS:规划:用于控制大规模异构系统的飞行分析
  • 批准号:
    2029049
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CPS: Breakthrough:Towards Resiliency in Cyber-physical Systems for Robot-assisted Surgery
CPS:突破:实现机器人辅助手术的网络物理系统的弹性
  • 批准号:
    1545069
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CI: NEW: Collaborative Research: Computer System Failure Data Repository to Enable Data-Driven Dependability
CI:新:协作研究:计算机系统故障数据存储库以实现数据驱动的可靠性
  • 批准号:
    1513051
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
I/UCRC Planning Grant: Computing and Genomics - An Essential Partnership for Biology Breakthroughs
I/UCRC 规划拨款:计算和基因组学——生物学突破的重要合作伙伴
  • 批准号:
    1439719
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Adaptive Software Implemented Fault-Tolerance for Networked Systems
自适应软件为网络系统实现容错
  • 批准号:
    9902026
  • 财政年份:
    1999
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Academic Research Infrastructure: Acquisition of Research Equipment for High-Speed Computing and Networking Initiative
学术研究基础设施:采购高速计算和网络计划的研究设备
  • 批准号:
    9601631
  • 财政年份:
    1996
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Engineering Research Equipment Grant: Investigation of LISPMachine Architecture Reliability and Performance
工程研究设备补助金:LISP机器架构可靠性和性能研究
  • 批准号:
    8604893
  • 财政年份:
    1986
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase I: Oscillator Processing Unit - Physical Reservoir Computing on the Edge
SBIR 第一阶段:振荡器处理单元 - 边缘物理油藏计算
  • 批准号:
    2335448
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
POSE: Phase I: Toward a Task-Parallel Programming Ecosystem for Modern Scientific Computing
POSE:第一阶段:迈向现代科学计算的任务并行编程生态系统
  • 批准号:
    2349144
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Center: IUCRC Phase I Carnegie Mellon: Center for Quantum Computing and Information Technologies (Q-CIT)
中心:IUCRC 第一阶段 卡内基梅隆:量子计算和信息技术中心 (Q-CIT)
  • 批准号:
    2310949
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Hybrid Computing Techniques for Quantum-inspired Ising Machines
SBIR 第一阶段:受量子启发的 Ising 机器的混合计算技术
  • 批准号:
    2233642
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Quantum computing with trapped ions Fast, high-fidelity entanglement via optical phase control
使用捕获离子进行量子计算 通过光学相位控制实现快速、高保真纠缠
  • 批准号:
    2886990
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Studentship
POSE: Phase I: Toward a Task-Parallel Programming Ecosystem for Modern Scientific Computing
POSE:第一阶段:迈向现代科学计算的任务并行编程生态系统
  • 批准号:
    2229304
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SBIR Phase I: Energy Efficient Superconducting Neuromorphic Computing Circuits
SBIR 第一阶段:节能超导神经形态计算电路
  • 批准号:
    2136676
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Chalcogenides phase-change metamaterials for neuromorphic computing applications
用于神经形态计算应用的硫属化物相变超材料
  • 批准号:
    573393-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    University Undergraduate Student Research Awards
NSF-BSF: The Phase-Modulated Quantum Optical Frequency Comb: A Simple Platform for One-Way Quantum Computing
NSF-BSF:相位调制量子光频梳:单向量子计算的简单平台
  • 批准号:
    2112867
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
STTR Phase I: Rebooting Artificial Intelligence Inference with a New Configurable Computing Fabric
STTR 第一阶段:使用新的可配置计算结构重启人工智能推理
  • 批准号:
    2036249
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了