MRI: Acquisition of High Performance Hybrid Computing Cluster to Advance Cyber-Enabled Science and Education at Penn State
MRI:收购高性能混合计算集群以推进宾夕法尼亚州立大学的网络科学和教育
基本信息
- 批准号:1626251
- 负责人:
- 金额:$ 92.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computers are now becoming the driving forces for ground-breaking discoveries and are transforming the science and education in this new data-driven era. The Cyber-Laboratory for Astronomy, Materials and Physics (CyberLAMP) at Penn State will put together a cutting-edge supercomputer cluster that includes both traditional central processing units (CPUs) and the latest hardware accelerators, such as graphics processing units (GPUs), to advance interdisciplinary research and education in cyberscience. Astronomers and physicists will use this high-performance hybrid computer to analyze data from revolutionary surveys and experiments and to perform state-of-the-art simulations to unravel of the origin of our Universe. Material scientists will run realistic, atomistic-scale, simulations to guide the design and development of next-generation complex materials. Computer scientists will analyze these science applications to inform the design of future computer architectures. These advances in both data analysis and simulations will enable the CyberLAMP members to shed new light on topics prioritized by national strategic plans, such as National Research Council's 2010 Decadal Survey for astronomy and astrophysics to search for habitable planets and to understand the fundamental physics of the cosmos and the White House's Materials Genome Initiative to expedite development of new materials. Furthermore, the CyberLAMP team will employ this cluster to enhance a wide range of outreach programs including: computational education to numerous students at The Pennsylvania State University, including its Commonwealth campuses; summer workshops for researchers and high-school teachers; and partnerships with industry to advance materials research and the co-design of future hardware-software systems. By expediting exploratory data analysis and simulations and catalyzing cross-disciplinary collaboration in developing and prototyping algorithms, the new hybrid cluster will enable the CyberLAMP team to deliver transformative breakthroughs in a number of key research areas. This includes state-of-the-art astrostatistics and astroinformatics for data analysis for world-leading surveys in cosmology and exoplanets, as well as sophisticated simulations to directly address the nature of dark matter and dark energy, and the formation of planetary systems; an order-of-magnitude increase of speed for reconstruction algorithms for the most ambitious astrophysical experiments probing fundamental physics, which will enlarge the discovery space for cosmic sources of neutrinos, gravity waves, and multi-messenger emitters, as well as heighten sensitivity to the neutrino mass hierarchy; dramatic advances in nanosecond-scale fully reactive molecular dynamics simulations for the development of next-generation complex materials; and novel insights for designing the next-generation of hardware accelerators in hybrid systems, highly parallel algorithms and software interfaces which could revolutionize the way hardware accelerators are used by data-intensive applications.
在这个数据驱动的新时代,计算机正在成为突破性发现的驱动力,并正在改变科学和教育。宾夕法尼亚州立大学的天文、材料和物理网络实验室(CyberLAMP)将组建一个尖端的超级计算机集群,其中包括传统的中央处理器(cpu)和最新的硬件加速器,如图形处理单元(gpu),以推进网络科学的跨学科研究和教育。天文学家和物理学家将使用这台高性能混合计算机来分析来自革命性调查和实验的数据,并进行最先进的模拟,以揭开我们宇宙的起源。材料科学家将运行现实的、原子尺度的模拟来指导下一代复杂材料的设计和开发。计算机科学家将分析这些科学应用,为未来计算机体系结构的设计提供信息。这些数据分析和模拟方面的进步将使CyberLAMP成员能够在国家战略计划优先考虑的主题上提供新的亮点,例如国家研究委员会的2010年天文学和天体物理学十年调查,以寻找可居住的行星,并了解宇宙的基本物理学,以及白宫的材料基因组计划,以加快新材料的开发。此外,CyberLAMP团队将利用这个集群来加强广泛的外展项目,包括:为宾夕法尼亚州立大学(包括其联邦校区)的众多学生提供计算教育;为研究人员和高中教师举办的夏季讲习班;与工业界合作,推进材料研究和未来硬件软件系统的共同设计。通过加速探索性数据分析和模拟,并在开发和原型算法方面促进跨学科合作,新的混合集群将使CyberLAMP团队能够在许多关键研究领域实现变革性突破。这包括最先进的天体统计和天体信息学,用于世界领先的宇宙学和系外行星调查的数据分析,以及直接解决暗物质和暗能量性质以及行星系统形成的复杂模拟;最雄心勃勃的天体物理实验的重建算法速度将提高一个数量级,这将扩大对中微子、引力波和多信使发射器的宇宙源的发现空间,并提高对中微子质量层次的灵敏度;纳秒级全反应分子动力学模拟在新一代复杂材料开发中的巨大进展以及在混合系统中设计下一代硬件加速器的新见解,高度并行的算法和软件接口,可以彻底改变硬件加速器在数据密集型应用中的使用方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cindy Gulis其他文献
Cindy Gulis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cindy Gulis', 18)}}的其他基金
Bridging the Gap between Theory and Next-generation Observations of the First Galaxies and Quasars
弥合第一星系和类星体理论与下一代观测之间的差距
- 批准号:
1412719 - 财政年份:2014
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
The First Massive Black Holes: Formation, Evolution, and Observational Signatures
第一个大质量黑洞:形成、演化和观测特征
- 批准号:
1009867 - 财政年份:2010
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
Collaborative Research: Cosmological All-wavelength Radiative Transfer (CART)
合作研究:宇宙学全波长辐射传输(CART)
- 批准号:
0965694 - 财政年份:2009
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
Collaborative Research: Cosmological All-wavelength Radiative Transfer (CART)
合作研究:宇宙学全波长辐射传输(CART)
- 批准号:
0807312 - 财政年份:2008
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
相似海外基金
MRI: Track 1 Acquisition of a High-Performance Computing System at New Mexico Tech
MRI:新墨西哥理工学院高性能计算系统的第一轨道采购
- 批准号:
2320162 - 财政年份:2024
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
- 批准号:
2319708 - 财政年份:2023
- 资助金额:
$ 92.07万 - 项目类别:
Continuing Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
- 批准号:
2320292 - 财政年份:2023
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a High-Performance X-Ray Photoelectron Spectrometer for Research and Training
设备: MRI:轨道 1 采购高性能 X 射线光电子能谱仪用于研究和培训
- 批准号:
2320116 - 财政年份:2023
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
- 批准号:
2320244 - 财政年份:2023
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
- 批准号:
2320846 - 财政年份:2023
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
MRI: Acquisition of a high-performance computing resource to enhance research and undergraduate education at the College of Staten Island
MRI:收购高性能计算资源以加强史坦顿岛学院的研究和本科教育
- 批准号:
2215760 - 财政年份:2022
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
- 批准号:
2216084 - 财政年份:2022
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
MRI: Acquisition of High-Performance Computing Cluster for Research in Engineering, Science, and Technology
MRI:收购高性能计算集群用于工程、科学和技术研究
- 批准号:
2216335 - 财政年份:2022
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
- 批准号:
2215388 - 财政年份:2022
- 资助金额:
$ 92.07万 - 项目类别:
Standard Grant