Three Projects in Econometric Theory

计量经济学理论的三个项目

基本信息

  • 批准号:
    1627660
  • 负责人:
  • 金额:
    $ 19.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Most empirical methods in economics and the social sciences derive their validity from the thought experiment on how they would perform in very large samples. The implicit hope is that ensuring good performance in large samples leads to acceptable performance in moderately small data sets as well. For some inference problems, however, it is known that the standard large sample approximation is too inaccurate to be a reliable guide for the sample sized typically encountered in empirical work. As a constructive remedy, it is sometimes possible to embed the original problem in an alternative large sample approximation that better captures the small sample features. This project aims at developing such alternative large sample approximations in three empirically relevant econometric problems: How to conduct inference with persistent time series; how to account for the presence of a large number of control variates in a linear regression; and how to conduct inference about the probability and properties of extreme events. Recent advances in econometric theory often consider sequences of parameter or tuning parameter values that lead to a different form of large sample approximations. Prominent examples include weak instrument asymptotics, local-to-unity time series asymptotics where the largest autoregressive root takes on values ever closer to one, and heteroskedasticity and autocorrelations robust inference with a bandwidth equal to a fixed fraction of the sample size. This research develops similar alternative asymptotics in three distinct inference problems: The first project generalizes the local-to-unity model by letting p autoregressive roots, as well as p-1 MA roots, converge to unity at the appropriate rate. The second project studies inference about a linear regression coefficient in the presence of a large number of potential controls, where the control coefficients are known to satisfy a particular L_2 bound that can be interpreted as a bound on the R^2 in a regression of the outcome on the controls. The third project concerns the problem of inference about tail properties based on an i.i.d. sample, under the sole assumption that extreme value theory to hold for the largest k observations, for a given and fixed k.
经济学和社会科学中的大多数经验方法都是从思想实验中获得有效性的,这些思想实验是关于它们在非常大的样本中如何表现的。隐含的希望是,确保在大样本中的良好性能也会导致在适度小的数据集中的可接受性能。然而,对于一些推理问题,人们知道,标准的大样本近似是太不准确,是一个可靠的指导样本大小通常遇到的经验工作。作为一种建设性的补救措施,有时可以将原始问题嵌入到另一种更好地捕获小样本特征的大样本近似中。该项目旨在开发三个经验相关的计量经济学问题的替代大样本近似:如何进行持续时间序列的推断;如何在线性回归中考虑大量控制变量的存在;以及如何进行关于极端事件的概率和属性的推断。计量经济学理论的最新进展经常考虑导致不同形式的大样本近似的参数序列或调整参数值。突出的例子包括弱仪器渐进性、局部到单位时间序列渐进性(其中最大的自回归根的值越来越接近1)以及异方差和自相关鲁棒推断(带宽等于样本量的固定分数)。本研究在三个不同的推理问题中开发了类似的替代渐近性:第一个项目通过让p个自回归根以及p-1个MA根以适当的速率收敛到单位来推广局部到单位模型。第二个项目研究在存在大量潜在控制的情况下关于线性回归系数的推断,其中已知控制系数满足特定的L_2界限,该界限可以被解释为在控制结果的回归中R^2的界限。第三个项目涉及基于独立同分布的尾部属性推断问题样本,在唯一的假设下,极值理论对最大k个观测值成立,对于给定的固定k。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulrich Mueller其他文献

Nächtliche Verkehrslärmbelästigung in Deutschland: individuelle und regionale Unterschiede in der NAKO Gesundheitsstudie
  • DOI:
    10.1007/s00103-020-03094-y
  • 发表时间:
    2020-02-11
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Kathrin Wolf;Ute Kraus;Mihovil Dzolan;Gabriele Bolte;Tobia Lakes;Tamara Schikowski;Karin Halina Greiser;Oliver Kuß;Wolfgang Ahrens;Fabian Bamberg;Heiko Becher;Klaus Berger;Hermann Brenner;Stefanie Castell;Antje Damms-Machado;Beate Fischer;Claus-Werner Franzke;Sylvia Gastell;Kathrin Günther;Bernd Holleczek;Lina Jaeschke;Rudolf Kaaks;Thomas Keil;Yvonne Kemmling;Lilian Krist;Nicole Legath;Michael Leitzmann;Wolfgang Lieb;Markus Loeffler;Claudia Meinke-Franze;Karin B. Michels;Rafael Mikolajczyk;Susanne Moebus;Ulrich Mueller;Nadia Obi;Tobias Pischon;Wolfgang Rathmann;Sabine Schipf;Börge Schmidt;Matthias Schulze;Inke Thiele;Sigrid Thierry;Sabina Waniek;Claudia Wigmann;Kerstin Wirkner;Johannes Zschocke;Annette Peters;Alexandra Schneider
  • 通讯作者:
    Alexandra Schneider
A Parent-Report Diary Study of Young Children’s Prospective Memory Successes and Failures
关于幼儿未来记忆成功与失败的家长报告日记研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Caitlin E. V. Mahy;Ege Kamber;Maria C. Conversano;Ulrich Mueller;S. Zuber
  • 通讯作者:
    S. Zuber
Laying the Groundwork—Molecular Sleuthing
  • DOI:
    10.1016/j.otohns.2008.05.062
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    John S. Oghalai;Ulrich Mueller
  • 通讯作者:
    Ulrich Mueller
Single-Molecule Mechanics of the Molecular Spring that Underlies Hearing
  • DOI:
    10.1016/j.bpj.2018.11.1656
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Tobias F. Bartsch;Felicitas E. Hengel;Aaron Oswald;Gilman Dionne;Iris V. Chipendo;Simranjit Mangat;Muhammad El Shatanofy;Ulrich Mueller;Lawrence Shapiro;A.J. Hudspeth
  • 通讯作者:
    A.J. Hudspeth
Was geht „Reproductive Health” den Dermatologen an?
  • DOI:
    10.1007/s001050050883
  • 发表时间:
    1999-03-17
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Walter Krause;Ulrich Mueller
  • 通讯作者:
    Ulrich Mueller

Ulrich Mueller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulrich Mueller', 18)}}的其他基金

Spatial Unit Roots
空间单位根
  • 批准号:
    2242455
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
OPUS: CRS: Synthesizing microbial ecology of fungus-growing ants
OPUS:CRS:综合真菌生长蚂蚁的微生物生态学
  • 批准号:
    1911443
  • 财政年份:
    2019
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Inference for the Mean
均值推断
  • 批准号:
    1919336
  • 财政年份:
    2019
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Evolution of adaptive synergism between mutualistic partners during range-limit evolution
合作研究:范围限制进化过程中互惠伙伴之间适应性协同的进化
  • 批准号:
    1354666
  • 财政年份:
    2014
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Inference in Non-Standard Econometric Problems
非标准计量经济学问题的推理
  • 批准号:
    1226464
  • 财政年份:
    2012
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Dissecting ant societies: elucidating how colony size affects brain and behavioral specializations
论文研究:剖析蚂蚁社会:阐明群体大小如何影响大脑和行为专业化
  • 批准号:
    1210412
  • 财政年份:
    2012
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Physiological constraints of symbiont switching: An experimental study of cultivar fidelity and cultivar re-association in fungus-growing ants
共生体转换的生理限制:真菌生长蚂蚁品种保真度和品种重新关联的实验研究
  • 批准号:
    0920138
  • 财政年份:
    2009
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
MSB: Experimental Coevolutionary Genetics of the Attine Ant-Microbe Symbiosis
MSB:蚂蚁-微生物共生的实验共同进化遗传学
  • 批准号:
    0919519
  • 财政年份:
    2009
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: Systematics, phylogenetics and the evolution of asexuality in the fungus-gardening ant genus Mycocepurus
论文研究:真菌园艺蚁属 Mycocepurus 的系统学、系统发育学和无性进化
  • 批准号:
    0808164
  • 财政年份:
    2008
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Efficient Tests in the Presence of Nuisance Parameters under the Null Hypothesis
零假设下存在干扰参数的有效检验
  • 批准号:
    0751056
  • 财政年份:
    2008
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Continuing Grant

相似海外基金

OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Improving long term forecasts of tree growth in carbon farming projects
改善碳农业项目中树木生长的长期预测
  • 批准号:
    LP230100049
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Linkage Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
  • 批准号:
    2346286
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Iterative Improvement of a Program for Building Inclusive, Diverse, Equitable, Accessible Large-scale (IDEAL) Participatory Science Projects
迭代改进建立包容、多样化、公平、可访问的大型(IDEAL)参与性科学项目的计划
  • 批准号:
    2313996
  • 财政年份:
    2024
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: ER2: The development of research ethics governance projects in computer science
合作研究:ER2:计算机科学中研究伦理治理项目的发展
  • 批准号:
    2419951
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Research Initiation: Understanding Team Diversity, Equity, and Inclusion in Undergraduate Engineering Design Projects
研究启动:理解本科工程设计项目中的团队多样性、公平性和包容性
  • 批准号:
    2306176
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Travel: Supplemental Funding Request: Collaboration Between Girl Power By Design and Managing Identities Projects
旅行:补充资金请求:Girl Power By Design 和管理身份项目之间的合作
  • 批准号:
    2331732
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Scaffolded Computing Projects for the Social Good
为社会公益服务的脚手架计算项目
  • 批准号:
    2315322
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Enhancing Climate Literacy in General Education Geoscience Courses through Individual Urban Heat Exposure Active Learning Projects
通过个人城市热暴露主动学习项目提高通识教育地球科学课程的气候素养
  • 批准号:
    2315364
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Linkage Projects - Grant ID: LP200301389
联动项目 - 拨款 ID:LP200301389
  • 批准号:
    ARC : LP200301389
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了