XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction

XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程

基本信息

  • 批准号:
    1629564
  • 负责人:
  • 金额:
    $ 41.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This project develops a system for "circuit programming," which allows a programmer to focus on the high-level solution to a problem rather than on the details of how the computation is organized. Circuit programming consists of writing rules that describe how data items depend on one another. The intellectual merits lie in the design of a new programming language for specifying these rules, along with the algorithms whereby the computer automatically finds efficient strategies for managing the necessary computations on available parallel hardware. The project's broader significance and importance lie in its potential to streamline work in areas such as artificial intelligence and machine learning. With the growing complexity of systems in these areas and their need to process big data in depth, research and teaching typically get bogged down in programming details, especially for parallel platforms; this project aims to delegate those details to automatic methods.The research develops a programming system for Dyna, a circuit programming language that enables concise specification of large function graphs that may be cyclic and/or infinite. Dyna employs (1) a pattern-matching notation that augments pure Prolog with evaluation and aggregation and (2) an object-like mechanism for dynamically defining new sub-circuits as modifications of old ones. This project is building an adaptive system that can mix forward and backward chaining to seek a fixpoint of the circuit and to update this fixpoint as the inputs change. The system will perform compile-time and runtime analysis of the Dyna program and will map it to Habanero, a system for scheduling parallel computations on multicore processors, with extensions for task priorities, task cancellation, GPU execution, and distributed execution.
这个项目开发了一个“电路编程”系统,它允许程序员专注于问题的高级解决方案,而不是如何组织计算的细节。电路编程包括编写描述数据项如何相互依赖的规则。智力上的优点在于设计一种新的编程语言来指定这些规则,沿着算法,从而计算机自动找到有效的策略来管理可用并行硬件上的必要计算。 该项目更广泛的意义和重要性在于其简化人工智能和机器学习等领域工作的潜力。 随着这些领域的系统越来越复杂,需要深入处理大数据,研究和教学通常会陷入编程细节的困境,特别是对于并行平台,本项目旨在将这些细节委托给自动方法。本研究为Dyna开发了一个编程系统,Dyna是一种电路编程语言,可以简洁地规范可能是循环和/或无限的大型函数图。Dyna采用(1)模式匹配符号,通过求值和聚合增强纯Prolog;(2)类对象机制,用于动态定义新的子电路作为旧电路的修改。 这个项目正在构建一个自适应系统,它可以混合正向和反向链接来寻找电路的固定点,并随着输入的变化更新这个固定点。 该系统将执行Dyna程序的编译时和运行时分析,并将其映射到Habanero,Habanero是一个用于在多核处理器上调度并行计算的系统,具有任务优先级,任务取消,GPU执行和分布式执行的扩展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Eisner其他文献

Grammar Induction: Beyond Local Search
语法归纳:超越本地搜索
A Glitch in the Matrix? Locating and Detecting Language Model Grounding with Fakepedia
矩阵中的故障?
  • DOI:
    10.48550/arxiv.2312.02073
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giovanni Monea;Maxime Peyrard;Martin Josifoski;Vishrav Chaudhary;Jason Eisner;Emre Kiciman;Hamid Palangi;Barun Patra;Robert West
  • 通讯作者:
    Robert West
Structure-Aware Path Inference for Neural Finite State Transducers
神经有限状态传感器的结构感知路径推理
  • DOI:
    10.48550/arxiv.2312.13614
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiting Tan;Chu;Jason Eisner
  • 通讯作者:
    Jason Eisner
Learning to Retrieve Iteratively for In-Context Learning
学习迭代检索以进行情境学习
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunmo Chen;Tongfei Chen;Harsh Jhamtani;Patrick Xia;Richard Shin;Jason Eisner;Benjamin Van Durme
  • 通讯作者:
    Benjamin Van Durme
Analyzing Learner Understanding of Novel L2 Vocabulary
分析学习者对新的 L2 词汇的理解

Jason Eisner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Eisner', 18)}}的其他基金

RI: Small: Linguistic Structure in Neural Sequence Models
RI:小:神经序列模型中的语言结构
  • 批准号:
    1718846
  • 财政年份:
    2017
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
RI: Small: CompCog: Modeling Latent Discrete Knowledge Across Utterances
RI:小:CompCog:跨话语的潜在离散知识建模
  • 批准号:
    1423276
  • 财政年份:
    2014
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
RI: Medium: Learned Dynamic Prioritization
RI:中:学习动态优先级
  • 批准号:
    0964681
  • 财政年份:
    2010
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
CAREER: Finite-State Machine Learning on Strings and Sequences
职业:字符串和序列的有限状态机器学习
  • 批准号:
    0347822
  • 财政年份:
    2004
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
ITR: Weighted Dynamic Programming for Statistical Natural Language Processing
ITR:统计自然语言处理的加权动态规划
  • 批准号:
    0313193
  • 财政年份:
    2003
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

XPS: FULL: Collaborative Research: Enabling Scalable Cloud And Edge-device Integration Using Cross-layer Parallelism
XPS:完整:协作研究:使用跨层并行性实现可扩展的云和边缘设备集成
  • 批准号:
    1903880
  • 财政年份:
    2018
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1818643
  • 财政年份:
    2017
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
  • 批准号:
    1629291
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Rethinking Architecture Support for Memory Consistency
XPS:完整:协作研究:重新思考对内存一致性的架构支持
  • 批准号:
    1629126
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1629459
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Enabling Scalable Cloud And Edge-device Integration Using Cross-layer Parallelism
XPS:完整:协作研究:使用跨层并行性实现可扩展的云和边缘设备集成
  • 批准号:
    1629347
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: PARAGRAPH: Parallel, Scalable Graph Analytics
XPS:完整:协作研究:段落:并行、可扩展图形分析
  • 批准号:
    1629548
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: PARAGRAPH: Parallel, Scalable Graph Analytics
XPS:完整:协作研究:段落:并行、可扩展图形分析
  • 批准号:
    1629657
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Rethinking Architecture Support for Memory Consistency
XPS:完整:协作研究:重新思考对内存一致性的架构支持
  • 批准号:
    1629196
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
  • 批准号:
    1629218
  • 财政年份:
    2016
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了