XPS:FULL: MSLO-JS: Towards Multi-SLO-Guaranteed per-Job Scheduling in Datacenters

XPS:FULL:MSLO-JS:在数据中心实现多 SLO 保证的每作业调度

基本信息

  • 批准号:
    1629625
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Today's datacenters enable a wide range of applications with diverse service-level objectives (SLOs), e.g., user-facing applications such as web searches and disaster recoveries that require real-time or near-real-time responses, calling for stringent job latency and throughput guarantees. However, due to the lack of a proper abstraction, the existing SLO-aware job resource provisioning approaches are platform dependent and trial-and-error by design. The proposed solution presents a new abstraction that provides an effective separation of concerns and thus makes it possible to develop platform-independent, portable algorithms that translate diverse job SLOs into exact performance objectives (a.k.a. budgets) for constituent tasks, resulting in SLO-guaranteed job resource provisioning. The approach proposed can be proven by design and is expected to provide (a) important insights into computer systems and architecture designs with high performance guarantees and cost-effectiveness; and (b) significant improvements in performance guarantees and resource utilization, and the reduction of operating cost for the increasingly popular cloud computing environment. It is also expected to encourage academia-and-industry,interdisciplinary and cross-layer collaborations.The proposed research develops a sound theoretical foundation to enable SLO-guaranteed job resource provisioning. It explores fundamental design principles and is cross-layer by design, involving a two-layer design, from applications to runtime system and system architecture. At the upper, application layer, with any given job workflow represented in the form of Directed Acyclic Graphs (DAGs), the job SLOs are translated into precise latency budgets for individual task nodes in the DAG, independent of the underlying system to be used to run the job. At the lower, runtime system layer, the subsystems for individual task nodes are selected and the resources are allocated to meet all the task performance budgets and hence the job SLOs. This proposed research will enable us to develop job resource provisioning algorithms with SLO guarantee, while allowing for service consolidation and achieving high datacenter resource utilization.
当今的数据中心支持具有不同服务级别目标(SLO)的各种应用,例如,面向用户的应用程序,如Web搜索和灾难恢复,需要实时或接近实时的响应,要求严格的作业延迟和吞吐量保证。然而,由于缺乏适当的抽象,现有的SLO感知作业资源供应方法是平台依赖的,并且通过设计试错。所提出的解决方案提出了一种新的抽象,该抽象提供了有效的关注点分离,从而可以开发独立于平台的可移植算法,将不同的作业SLO转换为精确的性能目标(也称为性能目标)。预算),从而实现有SLO保证的作业资源调配。所提出的方法可以通过设计来证明,并且期望提供(a)对具有高性能保证和成本效益的计算机系统和架构设计的重要见解;以及(B)在性能保证和资源利用方面的显著改进,以及对于日益流行的云计算环境的运营成本的降低。本研究为实现SLO保证的就业资源提供奠定了坚实的理论基础。它探索了基本的设计原则,并且是跨层的设计,涉及两层设计,从应用程序到运行时系统和系统架构。在上层应用层,对于以有向非循环图(DAG)的形式表示的任何给定作业工作流,作业SLO被转换为DAG中的各个任务节点的精确延迟预算,而与用于运行作业的底层系统无关。在较低的运行时系统层,为各个任务节点选择子系统,并分配资源以满足所有任务性能预算,从而满足作业SLO。这项研究将使我们能够开发具有SLO保证的作业资源配置算法,同时允许服务整合并实现高数据中心资源利用率。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ForkTail: a black-box fork-join tail latency prediction model for user-facing datacenter workloads
ForkTail:用于面向用户的数据中心工作负载的黑盒分叉连接尾部延迟预测模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Che其他文献

Statistical modification based post-filtering technique for HMM-based speech synthesis
基于统计修正的后置滤波技术用于基于 HMM 的语音合成
Achieving end-to-end throughput guarantee for TCP flows in a differentiated services network
在差异化服务网络中实现TCP流的端到端吞吐量保证
Two Families of Optimal Multipath Congestion Control Protocols
两个最优多路径拥塞控制协议系列
Tail Prediction for Heterogeneous Data Center Clusters
异构数据中心集群的尾部预测
  • DOI:
    10.3390/pr11020407
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    S. Malebary;Sami Alesawi;Hao Che
  • 通讯作者:
    Hao Che
Maternal outcomes among pregnant women with shunt-related congenital heart disease-associated pulmonary hypertension: a retrospective study
  • DOI:
    10.1186/s12871-025-03082-2
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Tiantian Sun;Hao Che;Jun Zhang;Yufang Lv;Yaguang Liu;Daqi Liu;Jinjing Wu;Sheng Wang;Liyun Zhao
  • 通讯作者:
    Liyun Zhao

Hao Che的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Che', 18)}}的其他基金

SHF: Medium: WHOLEPRO: An Online, Holistic Job Scheduling and Resource Provisioning Framework for Datacenter Architectures and Applications
SHF:中:WHOLEPRO:用于数据中心架构和应用程序的在线整体作业调度和资源配置框架
  • 批准号:
    1704504
  • 财政年份:
    2017
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: NeTS-NBD: An Integrated Solution to Provide QoS, Traffic Engineering, and Fault Tolerance in an Overlay Networking Environment
合作研究:NeTS-NBD:在覆盖网络环境中提供 QoS、流量工程和容错的集成解决方案
  • 批准号:
    0519999
  • 财政年份:
    2005
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Discovery Projects
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
  • 批准号:
    2335086
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Cooperative Agreement
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
  • 批准号:
    24K17540
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041581/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Grant
Full mitigation of birefringence for high-precision optical experiments
完全缓解双折射,实现高精度光学实验
  • 批准号:
    24K00649
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了