FRHTP: Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS)

FRHTP:中微子、核天体物理学和对称性网络 (N3AS)

基本信息

  • 批准号:
    1630782
  • 负责人:
  • 金额:
    $ 239.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

New discoveries in basic physics often require scientists to probe Nature at the extremes of energy, distance (very large or very small), intensity, and density, where it is most likely to uncover discrepancies in understanding. Extreme conditions can be produced in the laboratory - the high-energy particle accelerators are an example - but often only after great investments in both scientific personnel and infrastructure. For this reason, over the past two decades physicists interested in fundamental physics have increasingly turned to astrophysics, using the exotic conditions already existing in Nature to test the understanding of the underlying laws of physics. This strategy has proven successful: the high fluxes of neutrinos available from our Sun and cosmic rays led to the discovery of neutrino mass and flavor mixing; studies of the velocities of stars bound in galaxies and galaxy clusters revealed that 85% of the matter in the universe is dark, hidden from us, yet crucial in forming the structures we see in the night sky; observations of the thermonuclear explosions of distant stars led us to conclude that our universe is expanding at an increasing rate, dominated by some mysterious, unidentified vacuum energy; and most recently, a new field of gravitational wave astronomy opened up with Advanced LIGO's detection of the merger of two massive black holes, allowing scientists to test physics in the presence of extreme gravitational fields. This project will bring together nuclear physicists and astrophysicists interested in the quantitative modeling of astrophysical systems, to advance the understanding of the properties of neutrinos, the behavior of nuclear matter at the extremes of temperature and density, and the nature of dark matter. The main scientific goal of this project is to produce improved models of extreme astrophysical environments, like the cores of supernovae and the interiors of neutron stars, by combining knowledge of the underlying nuclear and neutrino microphysics, with the most advanced tools for numerical simulations in astrophysics. This will enable to reliably connect available astrophysical observables, such as the electromagnetic and nucleosynthetic signals from supernovae, to underlying fundamental microphysics. A second goal is to create the kind of interdisciplinary research environment that will allow the training of a new generation of scientists to work effectively at the interface of astrophysics and fundamental physics. The nuclear physics community will benefit greatly from junior researchers trained in this interdisciplinary science, who can then bridge the gap between astrophysical and astronomical measurements on one hand, and their interpretation in terms of our "standard model" of fundamental interactions, and its possible extensions, on the other.
基础物理学的新发现通常要求科学家在能量、距离(非常大或非常小)、强度和密度等极端条件下探索自然,这些条件最有可能发现理解上的差异。 极端条件可以在实验室中产生-高能粒子加速器就是一个例子-但通常只有在科学人员和基础设施的巨大投资之后。 出于这个原因,在过去的二十年里,对基础物理学感兴趣的物理学家越来越多地转向天体物理学,利用自然界中已经存在的奇异条件来测试对物理学基本定律的理解。 这一策略已被证明是成功的:来自太阳和宇宙射线的高通量中微子导致了中微子质量和味道混合的发现;对星系和星系团中恒星速度的研究表明,宇宙中85%的物质是黑暗的,对我们来说是隐藏的,但对形成我们在夜空中看到的结构至关重要;对遥远恒星的热核爆炸的观测使我们得出结论,我们的宇宙正在以越来越快的速度膨胀,由某种神秘的、未知的真空能量主导;最近,随着高级LIGO探测到两个大质量黑洞的合并,使科学家能够在极端引力场的情况下测试物理学。该项目将汇集对天体物理系统的定量建模感兴趣的核物理学家和天体物理学家,以促进对中微子性质,核物质在极端温度和密度下的行为以及暗物质性质的理解。 该项目的主要科学目标是通过将基本的核和中微子微观物理学知识与天体物理学中最先进的数值模拟工具相结合,制作极端天体物理环境的改进模型,如超新星的核心和中子星的内部。 这将能够可靠地将可用的天体物理学观测数据(如超新星的电磁和核合成信号)与基础微物理学联系起来。 第二个目标是创造一种跨学科的研究环境,使新一代科学家能够在天体物理学和基础物理学的界面上有效地工作。 核物理界将大大受益于在这一跨学科科学中受过训练的初级研究人员,他们一方面可以弥合天体物理学和天文学测量之间的差距,另一方面可以根据我们的基本相互作用的“标准模型”及其可能的扩展来解释它们。

项目成果

期刊论文数量(167)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sterile neutrinos and the global reactor antineutrino dataset
  • DOI:
    10.1007/jhep01(2021)167
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    J. Berryman;P. Huber
  • 通讯作者:
    J. Berryman;P. Huber
Pairing in Nuclei: Exact Solutions
原子核配对:精确解
Inference offers a metric to constrain dynamical models of neutrino flavor transformation
推理提供了一个度量来约束中微子味道转换的动态模型
  • DOI:
    10.1103/physrevd.102.043013
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Armstrong, Eve;Patwardhan, Amol V.;Rrapaj, Ermal;Ardizi, Sina Fallah;Fuller, George M.
  • 通讯作者:
    Fuller, George M.
Can magnetic fields (de)stabilize twin stars?
  • DOI:
    10.1093/mnras/stz542
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    R. O. Gomes;V. Dexheimer;Sophia Han;Sophia Han;Stefan Schramm
  • 通讯作者:
    R. O. Gomes;V. Dexheimer;Sophia Han;Sophia Han;Stefan Schramm
Get on the BAND Wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics
  • DOI:
    10.1088/1361-6471/abf1df
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Phillips;R. Furnstahl;U. Heinz;T. Maiti;W. Nazarewicz;F. Nunes;M. Plumlee;M. Pratola;S. Pratt;F. Viens;Stefan M. Wild
  • 通讯作者:
    D. Phillips;R. Furnstahl;U. Heinz;T. Maiti;W. Nazarewicz;F. Nunes;M. Plumlee;M. Pratola;S. Pratt;F. Viens;Stefan M. Wild
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wick Haxton其他文献

Adiabatic conversion of solar neutrinos.
  • DOI:
    10.1103/physrevlett.57.1271
  • 发表时间:
    1986-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Wick Haxton
  • 通讯作者:
    Wick Haxton
SevenOperators, a Mathematica script for harmonic oscillator nuclear matrix elements arising in semileptonic electroweak interactions
  • DOI:
    10.1016/j.cpc.2008.02.018
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wick Haxton;Cecilia Lunardini
  • 通讯作者:
    Cecilia Lunardini
The Scientific Life of John Bahcall
约翰·巴考尔的科学生涯
Morphing the shell model into an effective theory
将壳模型转变为有效的理论
  • DOI:
    10.1103/physrevlett.84.5484
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Wick Haxton;C.
  • 通讯作者:
    C.
Salty Water Cerenkov Detectors for Solar Neutrinos
用于太阳中微子的咸水切伦科夫探测器
  • DOI:
    10.1103/physrevlett.76.1562
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Wick Haxton
  • 通讯作者:
    Wick Haxton

Wick Haxton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wick Haxton', 18)}}的其他基金

Network for Neutrinos, Nuclear Astrophysics, and Symmetries
中微子、核天体物理学和对称性网络
  • 批准号:
    2020275
  • 财政年份:
    2020
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Cooperative Agreement
Workshop on Hadronic Parity Nonconservation
强子宇称不守恒研讨会
  • 批准号:
    1828046
  • 财政年份:
    2018
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
Conference on the Intersections of Particle and Nuclear Physics
粒子与核物理交叉会议
  • 批准号:
    1811960
  • 财政年份:
    2018
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
School on Astroparticle and Underground Science located at the Asilomar Conference Grounds; Monterey, California; September 4-8, 2013
天体粒子和地下科学学院位于阿西洛玛会议场地;
  • 批准号:
    1343814
  • 财政年份:
    2013
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
Summer School on Nuclear and Particle Astrophysics: Connecting Quarks with the Cosmos
核与粒子天体物理学暑期学校:连接夸克与宇宙
  • 批准号:
    0925377
  • 财政年份:
    2009
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
National Nuclear Physics Summer School
国家核物理暑期学校
  • 批准号:
    0500493
  • 财政年份:
    2005
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Continuing Grant
TAUP 2003, Eighth International Workshop on Topics in Astroparticle and Underground Physics
TAUP 2003,第八届天体粒子和地下物理主题国际研讨会
  • 批准号:
    0328381
  • 财政年份:
    2003
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
University of Washington Physics REU Site
华盛顿大学物理 REU 网站
  • 批准号:
    0097551
  • 财政年份:
    2001
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Continuing Grant
Feasibility of a Deep Underground National Laboratory
深部地下国家实验室的可行性
  • 批准号:
    0105023
  • 财政年份:
    2001
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
National Summer School in Nuclear Physics
国家核物理暑期学校
  • 批准号:
    0088940
  • 财政年份:
    2000
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Studentship
A national network for magnetic resonance spectroscopy
国家磁共振波谱网络
  • 批准号:
    LE240100050
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
EukaryoticHopanoids: Deciphering the regulatory network behind unusual lipids in eukaryotes
真核Hopanoids:破译真核生物异常脂质背后的调控网络
  • 批准号:
    EP/Y024702/1
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Fellowship
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
  • 批准号:
    EP/X036006/1
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Research Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
  • 批准号:
    2310861
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Continuing Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
ART: Translational Research Ambassadors Network for Strengthening Institutional Capacity and Fostering a Responsive and Open Mindset (TRANSFORM)
ART:加强机构能力和培养积极响应和开放心态的转化研究大使网络(TRANSFORM)
  • 批准号:
    2331208
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Cooperative Agreement
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 239.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了