New Methods for Bayesian Quantile Regression Modeling

贝叶斯分位数回归建模的新方法

基本信息

  • 批准号:
    1631963
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

This research project will develop flexible models and corresponding methods for inference and variable selection for a number of quantile regression problems. Regression modeling to explore the effect of a number of predictor variables on a response variable remains a key activity in statistical research. By targeting different percentiles of the response variable, quantile regression provides a practically important alternative to traditional mean regression for settings where the predictors may affect the tails of the response distribution in a different fashion than its center. This project will advance statistical methodology within the composite quantile modeling framework. Quantile regression is a burgeoning area of statistical research with great promise for substantive applications. The project will investigate the application of the methods to several problems within the economic and social sciences. The methods will be used, for example, to study the relative importance of different types of predictors on different levels of mathematical achievement for high school students. To facilitate use of the methods by practitioners and researchers from other fields, publicly available software will be developed for implementing several of the models. The project will create educational opportunities for graduate students and seek to increase the participation of women and underrepresented groups in the research.This research project will develop a general model-based framework for composite quantile regression to allow estimation and selection of predictor effects to be informed by multiple percentiles of the response distribution. The composite quantile regression modeling framework involves structured mixtures of distributions that will facilitate different inferential objectives in the integration of effects from several predictor variables through multiple response quantiles. Composite quantile regression is a recent development that has not yet been studied under a probabilistic modeling framework for the response distribution. The research project has a substantial analytic component with regard to the theoretical study of properties for the various quantile regression models as well as a challenging computational component with regard to achieving computationally tractable model fitting. The practical utility of the new methods will be investigated through several simulation studies in the context of variable selection to compare with well-established regularized regression methods. For all the models, the project will involve the study of relevant theoretical properties and design of computational techniques for inference, model checking, and prediction. The project also will explore hierarchical model extensions for practically relevant settings with multilevel data structures.
该研究项目将开发灵活的模型和相应的方法,用于许多分位数回归问题的推理和变量选择。回归建模,以探讨一些预测变量对响应变量的影响仍然是统计研究中的一个关键活动。通过针对响应变量的不同分布,分位数回归为传统均值回归提供了一种实际上重要的替代方法,用于预测因子可能以与其中心不同的方式影响响应分布的尾部的设置。这个项目将在复合分位数建模框架内推进统计方法。分位数回归是一个新兴的统计研究领域,具有很大的应用前景。该项目将调查这些方法在经济和社会科学领域若干问题上的应用。例如,这些方法将用于研究不同类型的预测因子对高中生不同水平数学成绩的相对重要性。为了便利其他领域的从业人员和研究人员使用这些方法,将开发可公开获得的软件,用于实施其中几种模式。该项目将为研究生创造教育机会,并寻求增加妇女和代表性不足的群体在研究中的参与,该研究项目将为复合分位数回归开发一个基于模型的一般框架,以便根据响应分布的多个分位数来估计和选择预测效果。复合分位数回归建模框架涉及分布的结构化混合,这将有助于通过多个响应分位数整合来自多个预测变量的效应的不同推断目标。复合分位数回归是最近的发展,尚未在响应分布的概率建模框架下进行研究。该研究项目有一个实质性的分析组件方面的各种分位数回归模型的属性的理论研究,以及一个具有挑战性的计算组件方面实现计算上易于处理的模型拟合。新方法的实际效用将通过在变量选择的背景下进行几次模拟研究来研究,以与成熟的正则化回归方法进行比较。对于所有的模型,该项目将涉及相关的理论属性和设计的计算技术的推理,模型检查和预测的研究。该项目还将探索层次模型扩展与多级数据结构的实际相关设置。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discussion of paper “nonparametric Bayesian inference in applications” by Peter Müller, Fernando A. Quintana and Garritt L. Page
Peter Müller、Fernando A. Quintana 和 Garritt L. Page 撰写的论文“应用中的非参数贝叶斯推理”的讨论
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Athanasios Kottas其他文献

Bayesian semiparametric modeling for stochastic precedence, with applications in epidemiology and survival analysis
  • DOI:
    10.1007/s10985-010-9164-y
  • 发表时间:
    2010-03-27
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Athanasios Kottas
  • 通讯作者:
    Athanasios Kottas
Flexible modeling for stock-recruitment relationships using Bayesian nonparametric mixtures
  • DOI:
    10.1007/s10651-011-0181-0
  • 发表时间:
    2011-09-16
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Kassandra Fronczyk;Athanasios Kottas;Stephan Munch
  • 通讯作者:
    Stephan Munch

Athanasios Kottas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Athanasios Kottas', 18)}}的其他基金

Bayesian Nonparametric Modeling and Inference Methods for Point Processes
点过程的贝叶斯非参数建模和推理方法
  • 批准号:
    1950902
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
CBMS Conference: Bayesian Modeling for Spatial and Spatio-Temporal Data
CBMS 会议:空间和时空数据的贝叶斯建模
  • 批准号:
    1642617
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Nonparametric Bayesian Regression for Categorical Responses: Novel Methodology for Modeling, Inference and Applications
分类响应的非参数贝叶斯回归:建模、推理和应用的新方法
  • 批准号:
    1310438
  • 财政年份:
    2013
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Bayesian Nonparametric Point Processes: New Methods and Applications to Extreme Value Analysis
贝叶斯非参数点过程:极值分析的新方法和应用
  • 批准号:
    1024484
  • 财政年份:
    2010
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research on Bayesian Semiparametric Population Dynamics Modeling
贝叶斯半参数人口动态建模协作研究
  • 批准号:
    0727543
  • 财政年份:
    2007
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research on Bayesian Nonparametric Methods for Spatial and Spatiotemporal Data
时空数据贝叶斯非参数方法的协作研究
  • 批准号:
    0505085
  • 财政年份:
    2005
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2412923
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
  • 批准号:
    2237616
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Bayesian Methods for Sample Size Re-estimation
样本量重新估计的贝叶斯方法
  • 批准号:
    2884699
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Studentship
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Studentship
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
  • 批准号:
    10714225
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
Computational methods for Bayesian clustering
贝叶斯聚类的计算方法
  • 批准号:
    2884420
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Studentship
Delivering training courses for environmental scientists - Bayesian methods for ecological and environmental modelling
为环境科学家提供培训课程——生态和环境建模的贝叶斯方法
  • 批准号:
    NE/Y003780/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Training Grant
Bayesian methods in planet formation
行星形成中的贝叶斯方法
  • 批准号:
    2871351
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Studentship
Advanced Bayesian Methods for Generalized Choice Response Time Models of Decision-Making
用于决策的广义选择响应时间模型的高级贝叶斯方法
  • 批准号:
    2242962
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了