Collaborative Research on Bayesian Nonparametric Methods for Spatial and Spatiotemporal Data

时空数据贝叶斯非参数方法的协作研究

基本信息

  • 批准号:
    0505085
  • 负责人:
  • 金额:
    $ 7.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Principal Investigators: Kottas, Athanasios and Gelfand, AlanProposal Number: DMS - 0505085 and DMS - 0504953Proposal Title: Collaborative Research on Bayesian Nonparametric Methods for Spatial and Spatiotemporal DataInstitution: University of California Santa Cruz and Duke UniversityThe investigators develop Bayesian nonparametric methodology forspatial and spatio-temporal data analysis. Point-referenced spatialdata arises in several fields, including atmospheric science, ecology, environmental science, and epidemiology. In fact, often such data is replicated across time say through sampling at monitoring sites. In certain cases, with appropriate preliminary manipulation, thereplicates may be viewed as independent. More often, the temporal dependence is retained and, discretizing time, a time series ofspatial processes emerges. In either case, virtually all of themodeling for the spatial processes is specified parametrically; in fact, it is almost always a Gaussian process which is most frequentlyassumed to be stationary. The investigators study new classes of nonparametric spatial models to remove these assumptions. These models are applicable to either of the above replicated settings. In its simplest form, the investigators use Dirichlet processes to create random spatial processes, which are non-Gaussian, nonstationary, and have non-homogeneous variance. These processes are defined throughtheir finite dimensional distributions, and are referred to as spatial Dirichlet processes. A spatial Dirichlet process is then convolvedwith a pure error process to create an illustrative spatial processwith a nugget component. Such models are hierarchical and can befitted through Markov chain Monte Carlo methods. In application, the investigators use spatial Dirichlet processes to introduce spatialrandom effects into the modeling, either directly with independent replicates or embedded within a dynamic model to handle temporal dependence. The investigators study an assortment of problemsassociated with the use of spatial Dirichlet processes, includingtheir theoretical global and local properties; their use as mixingmodels; their use with semiparametric mixing; their implementation in dynamic models; their utilization for interpolation at given timepoints and for forecasting at future time points; their use with non-Gaussian first stage specifications for the data; their use in describing multivariate distributions and, as a special case, for extended regression modeling; their use in modeling spatial point process data; and their extension to richer classes of so-called generalized spatial Dirichlet processes. Point-referenced spatial data arises in application areas as diverse as environmental science, climatology, ecology, epidemiology, andreal estate markets. As researchers collect more and more space and space-time data, the need for analyses to enhance their understanding of the complex processes they are sampling grows. This inspires the need for sufficiently rich models to accommodate a variety of globaland local behaviors. The primary motivation for this research is to expand the catalog of space-time modeling tools available to such scientists. This research work suggests the first approach to nonparametric Bayesian spatial and spatio-temporal data analysis. Nonparametric Bayesian approaches have witnessed increased utilization in recent years as a result of their successful application to certain problems in, for example, engineering and biomedical fields.Similar success is anticipated by bringing this methodology to space-time settings. In particular, it is anticipated that, for fields such as epidemiology, environmental contamination and weathermodeling, researchers will value the flexible modeling framework the work offers. And, an increase in usage of the methodology is expected as the computational techniques to fit the models are advanced.
摘要主要研究者: Kottas,Athanasios和Gelfand,Alan提案编号:DMS - 0505085和DMS -0504953提案标题:空间和时空数据的贝叶斯非参数方法的合作研究机构:加州大学圣克鲁斯和杜克大学研究人员开发了空间和时空数据分析的贝叶斯非参数方法。点参考空间数据出现在几个领域,包括大气科学,生态学,环境科学和流行病学。事实上,这些数据往往是通过在监测点取样等方式在不同时间复制的。在某些情况下,通过适当的初步处理,重复可以被视为独立的。更常见的是,时间依赖性被保留,并且通过离散时间,出现空间过程的时间序列。在这两种情况下,几乎所有的空间过程的建模都是参数化的;事实上,它几乎总是一个高斯过程,通常被认为是平稳的。研究人员研究了新的非参数空间模型,以消除这些假设。这些模型适用于上述任何一种复制设置。在其最简单的形式中,研究人员使用狄利克雷过程来创建随机空间过程,这些过程是非高斯的,非平稳的,并且具有非齐次方差。这些过程是通过它们的有限维分布来定义的,并且被称为空间狄利克雷过程。空间Dirichlet过程,然后convolvedwith一个纯误差过程创建一个说明性的空间过程与块金成分。这种模型是分层的,可以通过马尔可夫链蒙特卡罗方法拟合。在应用中,研究人员使用空间Dirichlet过程将spatialrandom effects引入到建模中,无论是直接使用独立的复制,还是嵌入到动态模型中来处理时间依赖性。研究人员研究了与空间Dirichlet过程的使用相关的各种问题,包括它们的理论全局和局部特性;它们作为混合模型的使用;它们与半参数混合的使用;它们在动态模型中的实现;它们在给定时间点的插值和在未来时间点的预测的利用;它们与数据的非高斯第一阶段规范的使用;它们在描述多元分布中的用途,作为特例,用于扩展回归建模;它们在空间点过程数据建模中的用途;以及它们对更丰富的所谓广义空间狄利克雷过程的扩展。点参考空间数据出现在环境科学、气候学、生态学、流行病学和实际房地产市场等不同的应用领域。随着研究人员收集越来越多的空间和时空数据,需要进行分析,以提高他们对采样的复杂过程的理解。这激发了对足够丰富的模型的需求,以适应各种全球和本地行为。这项研究的主要动机是扩大这些科学家可用的时空建模工具的目录。这项研究工作提出了第一种方法,非参数贝叶斯空间和时空数据分析。近年来,非参数贝叶斯方法在工程和生物医学等领域的成功应用使其应用日益广泛,并有望在时空环境中取得类似的成功。特别是,预计对于流行病学,环境污染和天气建模等领域,研究人员将重视工作提供的灵活建模框架。而且,随着适合模型的计算技术的进步,预计该方法的使用会增加。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Athanasios Kottas其他文献

Bayesian semiparametric modeling for stochastic precedence, with applications in epidemiology and survival analysis
  • DOI:
    10.1007/s10985-010-9164-y
  • 发表时间:
    2010-03-27
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Athanasios Kottas
  • 通讯作者:
    Athanasios Kottas
Flexible modeling for stock-recruitment relationships using Bayesian nonparametric mixtures
  • DOI:
    10.1007/s10651-011-0181-0
  • 发表时间:
    2011-09-16
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Kassandra Fronczyk;Athanasios Kottas;Stephan Munch
  • 通讯作者:
    Stephan Munch

Athanasios Kottas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Athanasios Kottas', 18)}}的其他基金

Bayesian Nonparametric Modeling and Inference Methods for Point Processes
点过程的贝叶斯非参数建模和推理方法
  • 批准号:
    1950902
  • 财政年份:
    2020
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
CBMS Conference: Bayesian Modeling for Spatial and Spatio-Temporal Data
CBMS 会议:空间和时空数据的贝叶斯建模
  • 批准号:
    1642617
  • 财政年份:
    2017
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
New Methods for Bayesian Quantile Regression Modeling
贝叶斯分位数回归建模的新方法
  • 批准号:
    1631963
  • 财政年份:
    2016
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Nonparametric Bayesian Regression for Categorical Responses: Novel Methodology for Modeling, Inference and Applications
分类响应的非参数贝叶斯回归:建模、推理和应用的新方法
  • 批准号:
    1310438
  • 财政年份:
    2013
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Bayesian Nonparametric Point Processes: New Methods and Applications to Extreme Value Analysis
贝叶斯非参数点过程:极值分析的新方法和应用
  • 批准号:
    1024484
  • 财政年份:
    2010
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research on Bayesian Semiparametric Population Dynamics Modeling
贝叶斯半参数人口动态建模协作研究
  • 批准号:
    0727543
  • 财政年份:
    2007
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了