International Conference on Computational Mathematics and Inverse Problems
计算数学与反问题国际会议
基本信息
- 批准号:1632364
- 负责人:
- 金额:$ 2.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of the International Conference on Computational Mathematics and Inverse Problems is to bring together an international collection of established specialists as well as junior researchers in the area of computational mathematics and inverse problems. This type of scientific gathering and interaction can have long-lasting impact on junior researchers and graduate students. A significant broader impact will be to bring young researchers into the field, and establish new connections between disparate groups. The conference will also build a bridge between computational mathematics and inverse problems. The exchange of ideas will be beneficial to researchers in both areas. In addition, there will be a significant attendance of graduate students. The conference is a great opportunity for them to access the cutting-edge research, find interesting research topics, learn from world leading researchers, and build the network/collaboration for future academic careers. Geographically, Michigan Technological University is a little isolated from major cities. The conference will provide a boost to the research activities and give the department more visibility in the mathematical sciences community.On the basis of current research trends and the wide spectrum of applications, the conference focuses on the following topics: iterative methods for large sparse eigenvalue problems with applications in big data sciences, finite element methods for eigenvalue problems, computational electromagnetic, direct techniques in inverse scattering theory, full wave inversion. The conference will feature plenary talks given by international experts on the aforementioned topics, invited talks from junior researchers, and contributed talks mainly from graduate students. The topics of the conference involve rapidly developments at the frontiers on today's research in computational mathematics and inverse problems. On one hand, the demand of computational methods in inverse problems is ever increasing. On the other hand, the computational mathematicians can find interesting new problems in inverse problems. Applicability of the conference topics extends to many real world applications including big data sciences, high performance computing, medical imaging, non-destructive testing, underground imaging and exploration.
计算数学与反问题国际会议的主要目标是汇集计算数学和反问题领域的国际专家以及初级研究人员。这种类型的科学聚会和互动可以对初级研究人员和研究生产生持久的影响。更广泛的重大影响将是吸引年轻的研究人员进入该领域,并在不同的群体之间建立新的联系。这次会议还将在计算数学和反问题之间架起一座桥梁。思想的交流对这两个领域的研究人员都是有益的。此外,将有大量的研究生出席。会议是一个很好的机会,让他们接触到最前沿的研究,发现有趣的研究课题,向世界领先的研究人员学习,并为未来的学术生涯建立网络/合作。在地理位置上,密歇根理工大学与主要城市有点隔离。这次会议将促进研究活动,并使该系在数学科学界更加引人注目。根据目前的研究趋势和广泛的应用范围,会议重点讨论了以下主题:大数据科学中的大稀疏特征值问题的迭代方法、特征值问题的有限元方法、计算电磁学、逆散射理论中的直接技术、全波反演。会议将包括国际专家就上述主题进行的全体会议,初级研究人员的邀请演讲,以及主要由研究生贡献的演讲。会议的主题涉及当今计算数学和反问题研究前沿的快速发展。一方面,反问题对计算方法的要求越来越高。另一方面,计算数学家可以在反问题中发现有趣的新问题。会议主题的适用性扩展到许多现实世界的应用,包括大数据科学,高性能计算,医学成像,无损检测,地下成像和勘探。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiguang Sun其他文献
A deterministic-statistical approach to reconstruct moving sources using sparse partial data
使用稀疏部分数据重建移动源的确定性统计方法
- DOI:
10.1088/1361-6420/abf813 - 发表时间:
2021-01 - 期刊:
- 影响因子:2.1
- 作者:
Yanfang Liu;Yukun Guo;Jiguang Sun - 通讯作者:
Jiguang Sun
A new finite element approach for the Dirichlet eigenvalue problem
狄利克雷特征值问题的一种新的有限元方法
- DOI:
10.1016/j.aml.2020.106295 - 发表时间:
2020-01 - 期刊:
- 影响因子:3.7
- 作者:
Wenqiang Xiao;Bo Gong;Jiguang Sun;Zhimin Zhang - 通讯作者:
Zhimin Zhang
A mixed FEM for the quad-curl eigenvalue problem
- DOI:
10.1007/s00211-015-0708-7 - 发表时间:
2013-10 - 期刊:
- 影响因子:2.1
- 作者:
Jiguang Sun - 通讯作者:
Jiguang Sun
Regular Convergence and Finite Element Methods for Eigenvalue Problems
- DOI:
10.48550/arxiv.2206.00626 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Jiguang Sun - 通讯作者:
Jiguang Sun
Integral EquationMethod for a Non-Selfadjoint Steklov Eigenvalue Problem
非自伴Steklov特征值问题的积分方程法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yunyun Ma;Jiguang Sun - 通讯作者:
Jiguang Sun
Jiguang Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiguang Sun', 18)}}的其他基金
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Finite Element Methods for High Order Eigenvalue Problems
高阶特征值问题的有限元方法
- 批准号:
1521555 - 财政年份:2015
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
US-China-Germany Planning Visits: Direct and Inverse Scattering Methods for Periodic Structures with Arbitrary Profiles and Defects
美中德规划访问:具有任意轮廓和缺陷的周期性结构的直接和逆散射方法
- 批准号:
1427665 - 财政年份:2014
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Numerical Methods for Transmission Eigenvalues
传输特征值的数值方法
- 批准号:
1321391 - 财政年份:2013
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Numerical Methods for Transmission Eigenvalues
传输特征值的数值方法
- 批准号:
1016092 - 财政年份:2010
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
相似海外基金
Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
- 批准号:
2414575 - 财政年份:2024
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Conference: Travel Grant for the 27th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2023)
会议:第 27 届计算分子生物学研究国际会议 (RECOMB 2023) 旅费补助
- 批准号:
2325976 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2023 IEEE International Conference on Computational Photography (IEEE ICCP)
旅行:2023 年 IEEE 国际计算摄影会议 (IEEE ICCP) 的 NSF 学生旅行补助金
- 批准号:
2331283 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2023 ICCABS (12th International Conference on Computational Advances in Bio and medical Sciences)
旅行:2023 年 ICCABS(第十二届生物与医学计算进展国际会议)的 NSF 学生旅行补助金
- 批准号:
2409466 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
International Conference on Cognitive Computational Neuroscience, 2023
认知计算神经科学国际会议,2023
- 批准号:
BB/X018350/1 - 财政年份:2023
- 资助金额:
$ 2.47万 - 项目类别:
Research Grant
Student Travel Support for the International Conference on Computational Photography (ICCP) 2022
2022 年国际计算摄影会议 (ICCP) 的学生旅行支持
- 批准号:
2234187 - 财政年份:2022
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Ninth International Conference on Computational Advances in Bio & Medical Sciences (ICCABS)
第九届生物计算进展国际会议
- 批准号:
2005642 - 财政年份:2020
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2020 Annual International Conference on Research in Computational Molecular Biology (RECOMB 2020)
NSF 学生旅费资助 2020 年计算分子生物学研究国际会议 (RECOMB 2020)
- 批准号:
2004403 - 财政年份:2020
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
The Second International Conference on Computational Methods and Applications in Engineering
第二届工程计算方法及应用国际会议
- 批准号:
1952848 - 财政年份:2020
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant
Eighth International IEEE Conference on Computational Advances in Bio and Medical Sciences (ICCABS) - Travel Awards
第八届 IEEE 生物与医学计算进展国际会议 (ICCABS) - 旅行奖
- 批准号:
1853991 - 财政年份:2019
- 资助金额:
$ 2.47万 - 项目类别:
Standard Grant