Numerical Methods for Transmission Eigenvalues
传输特征值的数值方法
基本信息
- 批准号:1016092
- 负责人:
- 金额:$ 11.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The transmission eigenvalue problem has attracted many researchers in the scattering and inverse scattering communities recently. Although simply stated, the problem is not covered by any standard theory of partial differential equations. Numerical treatment of transmission eigenvalues is very limited to date. Effective numerical methods will enhance the understanding of the problem and provide tools for mathematicians and engineers to compute transmission eigenvalues. This proposal aims at robust numerical methods for transmission eigenvalues for the Helmholtz equation and the Maxwell's equations. In particular, the following research topics will be carried out. 1) Iterative methods for the Helmholtz equation. Based on a fourth order reformulation, an associated generalized eigenvalue problem will be solved by the finite element method. Then iterative methods will be applied to search roots of a related algebraic function which turn out to be the transmission eigenvalues. 2) Continuous finite element method for the Maxwell's equations. The transmission eigenvalue problem of the Maxwell's equations will be written in a suitable weak form first. Then the curl conforming edge elements will be used to compute the transmission eigenvalues. 3) Iterative methods for the anisotropic Maxwell's equations. This approach is again based on a forth order reformulation of the transmission eigenvalue problem of the anisotropic Maxwell's equations. An associated generalized Maxwell's eigenvalue problem will be used to set up an algebraic equation whose roots are the transmission eigenvalues. Then iterative methods can be applied to search the roots of the algebraic equation. It is an extension of the iterative methods for the Helmholtz equation. However, the case for the Maxwell's equations is much more difficult and require additional technical treatment.The proposed research will be a pioneer numerical study on transmission eigenvalues for the Helmholtz equation and the Maxwell's equations. The results are important for the development of mathematical theory for transmission eigenvalues and can be used to compare various estimates in inverse scattering theory. The proposed research will provide mathematicians and engineers reliable tools to compute transmission eigenvalues. It will lead to new methods for studying the inverse scattering problems such as inverse electromagnetic scattering problem for anisotropic media. Since transmission eigenvalues can be used to estimate material properties of the scattering object, the proposed research has potential usage in non-destructive testing, geophysical applications, medical imaging, etc. For example, it is possible to detect the presence of cavities in the dielectric from the location of the transmission eigenvalues. The numerical results will be disseminated to mathematician for analytical study of transmission eigenvalues and engineers for detection and reconstruction of unknown objects. In addition, successful accomplishment of the proposed project will enhance the research capacity of the university and provide graduate students valuable research opportunities.
传输本征值问题是近年来散射和逆散射领域的研究热点。虽然简单地说,这个问题是不涵盖任何标准理论的偏微分方程。传输特征值的数值处理是非常有限的日期。有效的数值方法将有助于加深对问题的理解,并为数学家和工程师提供计算传输特征值的工具。该建议的目的是在强大的数值方法传输本征值的亥姆霍兹方程和麦克斯韦方程。具体而言,将开展以下研究课题。1)Helmholtz方程的迭代方法。基于一个四阶变换,一个相应的广义特征值问题将用有限元法求解。然后用迭代法求出相应代数函数的根,这些根就是传输特征值。2)麦克斯韦方程组的连续有限元法。麦克斯韦方程组的传输本征值问题将首先写成适当的弱形式。然后利用符合旋度的棱边元计算透射本征值。3)各向异性麦克斯韦方程组的迭代方法。这种方法再次是基于四阶的各向异性麦克斯韦方程的传输本征值问题的重新制定。一个相关的广义麦克斯韦特征值问题将被用来建立一个代数方程,其根是传输特征值。然后用迭代法求解方程的根。它是Helmholtz方程迭代法的推广。然而,麦克斯韦方程组的情况下是更加困难的,需要额外的技术处理。拟议的研究将是一个先驱的数值研究的传输本征值的亥姆霍兹方程和麦克斯韦方程。结果是重要的传输本征值的数学理论的发展,并可用于比较各种估计逆散射理论。 该研究为数学家和工程师提供了计算传输特征值的可靠工具。这将为研究诸如各向异性介质的电磁逆散射问题等逆散射问题提供新的方法。由于传输本征值可以用来估计散射对象的材料特性,所提出的研究在无损检测,地球物理应用,医学成像等方面具有潜在的用途。例如,它是可能的,以检测腔体的存在,在电介质中的传输本征值的位置。数值结果将分发给数学家进行分析研究的传输特征值和工程师的检测和重建的未知对象。此外,成功完成拟议项目将提高大学的研究能力,并为研究生提供宝贵的研究机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiguang Sun其他文献
A deterministic-statistical approach to reconstruct moving sources using sparse partial data
使用稀疏部分数据重建移动源的确定性统计方法
- DOI:
10.1088/1361-6420/abf813 - 发表时间:
2021-01 - 期刊:
- 影响因子:2.1
- 作者:
Yanfang Liu;Yukun Guo;Jiguang Sun - 通讯作者:
Jiguang Sun
A new finite element approach for the Dirichlet eigenvalue problem
狄利克雷特征值问题的一种新的有限元方法
- DOI:
10.1016/j.aml.2020.106295 - 发表时间:
2020-01 - 期刊:
- 影响因子:3.7
- 作者:
Wenqiang Xiao;Bo Gong;Jiguang Sun;Zhimin Zhang - 通讯作者:
Zhimin Zhang
A mixed FEM for the quad-curl eigenvalue problem
- DOI:
10.1007/s00211-015-0708-7 - 发表时间:
2013-10 - 期刊:
- 影响因子:2.1
- 作者:
Jiguang Sun - 通讯作者:
Jiguang Sun
Regular Convergence and Finite Element Methods for Eigenvalue Problems
- DOI:
10.48550/arxiv.2206.00626 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Jiguang Sun - 通讯作者:
Jiguang Sun
Integral EquationMethod for a Non-Selfadjoint Steklov Eigenvalue Problem
非自伴Steklov特征值问题的积分方程法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yunyun Ma;Jiguang Sun - 通讯作者:
Jiguang Sun
Jiguang Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiguang Sun', 18)}}的其他基金
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
International Conference on Computational Mathematics and Inverse Problems
计算数学与反问题国际会议
- 批准号:
1632364 - 财政年份:2016
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Finite Element Methods for High Order Eigenvalue Problems
高阶特征值问题的有限元方法
- 批准号:
1521555 - 财政年份:2015
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
US-China-Germany Planning Visits: Direct and Inverse Scattering Methods for Periodic Structures with Arbitrary Profiles and Defects
美中德规划访问:具有任意轮廓和缺陷的周期性结构的直接和逆散射方法
- 批准号:
1427665 - 财政年份:2014
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
Numerical Methods for Transmission Eigenvalues
传输特征值的数值方法
- 批准号:
1321391 - 财政年份:2013
- 资助金额:
$ 11.92万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining E. coli Diversity in Complex Samples: Methods for Surveillance & Transmission
定义复杂样品中的大肠杆菌多样性:监测方法
- 批准号:
MR/Y034449/1 - 财政年份:2024
- 资助金额:
$ 11.92万 - 项目类别:
Research Grant
Developing methods for dynamic contact network parameterisation within individual-level models for infectious disease transmission.
开发传染病传播个体水平模型中动态接触网络参数化的方法。
- 批准号:
548001-2020 - 财政年份:2022
- 资助金额:
$ 11.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Towards the malaria end game in Malawi: Developing and validating an Early Warning System using geostatistical methods for heterogeneous transmission
迈向马拉维的疟疾最终游戏:使用地统计方法开发和验证用于异质传播的早期预警系统
- 批准号:
2664936 - 财政年份:2021
- 资助金额:
$ 11.92万 - 项目类别:
Studentship
Source Attribution and Transmission Dynamics of Campylobacter and Shigella Using Culture-Independent Molecular Methods in an Urban Slum in Dhaka, Bangladesh
使用独立于培养的分子方法在孟加拉国达卡的城市贫民窟中弯曲杆菌和志贺氏菌的来源归属和传播动力学
- 批准号:
10649500 - 财政年份:2021
- 资助金额:
$ 11.92万 - 项目类别:
Source Attribution and Transmission Dynamics of Campylobacter and Shigella Using Culture-Independent Molecular Methods in an Urban Slum in Dhaka, Bangladesh
使用独立于培养的分子方法在孟加拉国达卡的城市贫民窟中弯曲杆菌和志贺氏菌的来源归属和传播动力学
- 批准号:
10378897 - 财政年份:2021
- 资助金额:
$ 11.92万 - 项目类别:
The role of healthcare environment in transmission of antibiotic-resistant bacteria and environmental infection prevention strategies using no-touch methods
医疗环境在抗生素耐药细菌传播中的作用以及使用非接触方法预防环境感染的策略
- 批准号:
21K08504 - 财政年份:2021
- 资助金额:
$ 11.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Source Attribution and Transmission Dynamics of Campylobacter and Shigella Using Culture-Independent Molecular Methods in an Urban Slum in Dhaka, Bangladesh
使用独立于培养的分子方法在孟加拉国达卡的城市贫民窟中弯曲杆菌和志贺氏菌的来源归属和传播动力学
- 批准号:
10462761 - 财政年份:2021
- 资助金额:
$ 11.92万 - 项目类别:
Developing methods for dynamic contact network parameterisation within individual-level models for infectious disease transmission.
开发传染病传播个体水平模型中动态接触网络参数化的方法。
- 批准号:
548001-2020 - 财政年份:2021
- 资助金额:
$ 11.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Stochastic Control-Theoretic Approach to Development of Simultaneously Cyber-Secure and Energy-Efficient Randomized Transmission Methods for Dependable IoT
用于开发同时网络安全和节能的可靠物联网随机传输方法的随机控制理论方法
- 批准号:
20K14771 - 财政年份:2020
- 资助金额:
$ 11.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A mixed-methods evaluation of advice on isolation and health-seeking to contain transmission
对隔离和寻求健康以遏制传播的建议的混合方法评估
- 批准号:
MC_PC_19071 - 财政年份:2020
- 资助金额:
$ 11.92万 - 项目类别:
Intramural














{{item.name}}会员




