EAGER: Nonlinear and Data-Adaptive Compressive Sampling for Big Data Processing

EAGER:用于大数据处理的非线性和数据自适应压缩采样

基本信息

  • 批准号:
    1632865
  • 负责人:
  • 金额:
    $ 11.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-12-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

As pervasive sensors continuously collect and record massive amounts ofhigh-dimensional data from communication, social, and biological networks,and growing storage as well as processing capacities of modern computershave provided new and powerful ways to dig into such huge quantities ofinformation, the need for novel analytic tools to comb through these "bigdata" becomes imperative. The objective of this project is to develop anovel framework for nonlinear, data-adaptive (de)compression algorithms tolearn the latent structure within large-scale, incomplete or corrupteddatasets for compressing and storing only the essential information, forrunning analytics in real time, inferring missing pieces of a dataset, andfor reconstructing the original data from their compressed renditions. The intellectual merit lies in the exploration of the fertile but largelyunexplored areas of manifold learning, nonlinear dimensionality reduction,and sparsity-aware techniques for compression and recovery of missing andcompromised measurements. Capitalizing on recent advances in machinelearning and signal processing, differential geometry, sparsity, anddictionary learning are envisioned as key enablers. Effort will be put alsointo developing online and distributed (non)linear dimensionality reductionalgorithms to allow for streaming analytics of sequential measurementsusing parallel processors. The broader impact is to contribute to the development of novel computational methods and tools useful for data inference, cleansing, forecasting, and collaborative filtering, with direct impact to statistical signal processing and machine learning applicationsto large-scale data analysis, including communication, social, andbiological networks.
随着无处不在的传感器不断收集和记录来自通信、社会和生物网络的海量高维数据,以及现代计算机不断增长的存储和处理能力提供了新的和强大的方法来挖掘如此大量的信息,对新型分析工具的需求变得迫切。该项目的目标是开发一种新的非线性、数据自适应(De)压缩算法框架,以了解大规模、不完整或损坏的数据集中的潜在结构,以便仅压缩和存储基本信息,进行实时分析,推断数据集的缺失片段,并从压缩后的再现中重建原始数据。智能的优点在于探索肥沃但尚未探索的领域,如流形学习、非线性降维以及稀疏性感知技术,用于压缩和恢复丢失和受损的测量。利用机器学习和信号处理的最新进展,微分几何、稀疏性和词典学习被视为关键的推动因素。还将努力开发在线和分布式(非线性)降维算法,以便能够使用并行处理器对顺序测量进行流分析。更广泛的影响是促进开发可用于数据推理、净化、预测和协作过滤的新的计算方法和工具,对统计信号处理和机器学习应用产生直接影响,用于大规模数据分析,包括通信、社会和生物网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantinos Slavakis其他文献

Robust Capon beamforming by the adaptive projected subgradient method
采用自适应投影次梯度法的鲁棒 Capon 波束形成
Adaptive Processing in a World of Projection【Plenary Lecture】
投影世界中的自适应处理[全体演讲]
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sergios Theodoridis;Konstantinos Slavakis;Isao Yamada
  • 通讯作者:
    Isao Yamada
Speech in noise listening correlates identified in resting state and DTI MRI images
  • DOI:
    10.1016/j.bandl.2024.105503
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    David S. Wack;Ferdinand Schweser;Audrey S. Wack;Sarah F. Muldoon;Konstantinos Slavakis;Cheryl McGranor;Erin Kelly;Robert S. Miletich;Kathleen McNerney
  • 通讯作者:
    Kathleen McNerney
Optimization over possiblynonconvex fixed point set of certainmappings and its signal processingapplications
某些映射的可能非凸定点集的优化及其信号处理应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konstantinos Slavakis;Sergios Theodoridi;Isao Yamada;Isao Yamada
  • 通讯作者:
    Isao Yamada
Online kernel-based classification byprojection
基于核的在线投影分类
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konstantinos Slavakis;SergiosTheodoridis Isao Yamada
  • 通讯作者:
    SergiosTheodoridis Isao Yamada

Konstantinos Slavakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantinos Slavakis', 18)}}的其他基金

CIF:Small:Collaborative Research:Distributed Fog Computing for Non-Convex Big-Data Analytics
CIF:小:协作研究:用于非凸大数据分析的分布式雾计算
  • 批准号:
    1718796
  • 财政年份:
    2017
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
EAGER: Nonlinear and Data-Adaptive Compressive Sampling for Big Data Processing
EAGER:用于大数据处理的非线性和数据自适应压缩采样
  • 批准号:
    1343860
  • 财政年份:
    2013
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Continuing Grant
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
  • 批准号:
    2348826
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Data Assimilation for Nonlinear, Non-Gaussian, and High-Dimensional Combustion Problems on Supercomputers
合作研究:超级计算机上非线性、非高斯和高维燃烧问题的自适应数据同化
  • 批准号:
    2403552
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Continuing Grant
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
  • 批准号:
    2308200
  • 财政年份:
    2023
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Standard Grant
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
  • 批准号:
    RGPIN-2020-07235
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
  • 批准号:
    RGPIN-2018-06135
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
  • 批准号:
    RGPIN-2020-05016
  • 财政年份:
    2022
  • 资助金额:
    $ 11.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了