BIGDATA: Collaborative Research: IA: F: Too Interconnected to Fail? Network Analytics on Complex Economic Data Streams for Monitoring Financial Stability

BIGDATA:协作研究:IA:F:互联性太强以至于不会失败?

基本信息

  • 批准号:
    1633158
  • 负责人:
  • 金额:
    $ 52.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The recent financial crisis has accentuated the need for effective monitoring, oversight and regulation of financial markets and institutions. Complex market structures involving intricate interconnected relationships among financial institutions can help propagate and amplify shocks and hence also foster systemic risk. This project develops an integrative framework, based on accounting principles, that leverages a wide array of diverse quantitative financial datastreams, complemented by metadata and market announcements for the purpose of identifying and predicting market participants that could endanger the overall financial system.The proposed research builds upon modern statistics and computer science works, as well as recent financial and economic ideas aimed at assessing threats to financial stability and uncovering the complexity of financial systems in different market conditions. It will result in both new methods for complex Big Data and empirical results that can advance the state-of-the-art in financial research, as well as tools that support and enhance financial policymaking and decision-making. Key tasks of the project include: (1) Develop a rigorous accounting framework to integrate multiple financial and econometric data streams from many platforms and technologies. (2) Develop and customize a range of new network models and analysis tools for use with multiple financial data streams. An important idea will be to extend network and econometric tools in order to compare the structural evolution of different types of networks in response to external events and policy changes.
最近的金融危机突出表明,需要对金融市场和机构进行有效的监测、监督和监管。复杂的市场结构涉及金融机构之间错综复杂的相互关联关系,可能有助于传播和放大冲击,从而也会助长系统性风险。该项目开发了一个基于会计原则的综合框架,该框架利用各种不同的量化金融数据流,辅之以元数据和市场公告,以识别和预测可能危及整个金融体系的市场参与者。拟议的研究建立在现代统计和计算机科学工作的基础上,以及最近的金融和经济思想,旨在评估对金融稳定的威胁,并揭示金融体系在不同市场条件下的复杂性。它将为复杂的大数据和实证结果带来新的方法,这些方法可以推动金融研究的最新发展,以及支持和加强金融政策制定和决策的工具。该项目的主要任务包括:(1)开发一个严格的会计框架,以整合来自许多平台和技术的多个金融和计量经济数据流。(2)开发和定制一系列新的网络模型和分析工具,用于多个金融数据流。一个重要的想法是扩大网络和计量经济学工具,以便比较不同类型的网络在应对外部事件和政策变化时的结构演变。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Online Semi-NMF Algorithm for Soft-Clustering of Financial Institutions
一种用于金融机构软聚类的在线半NMF算法
Monitoring sparse and attributed networks with online Hurdle models
使用在线 Hurdle 模型监控稀疏网络和归因网络
  • DOI:
    10.1080/24725854.2020.1861390
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ebrahimi, Samaneh;Reisi-Gahrooei, Mostafa;Paynabar, Kamran;Mankad, Shawn
  • 通讯作者:
    Mankad, Shawn
System Identification of High-Dimensional Linear Dynamical Systems With Serially Correlated Output Noise Components
Single stage prediction with embedded topic modeling of online reviews for mobile app management
  • DOI:
    10.1214/18-aoas1152
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shawn Mankad;Shengli Hu;A. Gopal
  • 通讯作者:
    Shawn Mankad;Shengli Hu;A. Gopal
Joint estimation of multiple network Granger causal models
  • DOI:
    10.1016/j.ecosta.2018.08.001
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    A. Skripnikov;G. Michailidis
  • 通讯作者:
    A. Skripnikov;G. Michailidis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shawn Mankad其他文献

Sidedness and the Urgency to Borrow in the Interbank Market
银行间市场借款的侧面性和紧迫性
Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Aairs Federal Reserve Board, Washington, D.C. Interconnectedness in the Interbank Market
财经研讨系列 研究分部
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Celso Brunetti;J. Harris;Shawn Mankad
  • 通讯作者:
    Shawn Mankad
Protecting the anonymity of online users through Bayesian data synthesis
通过贝叶斯数据合成保护在线用户的匿名性
  • DOI:
    10.1016/j.eswa.2022.119409
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. J. Schneider;Jingchen Hu;Shawn Mankad;Cameron D. Bale
  • 通讯作者:
    Cameron D. Bale
Do U.S. Regulators Listen to the Public? Testing the Regulatory Process with the RegRank Algorithm
美国监管机构听取公众意见吗?
  • DOI:
    10.1145/2630729.2630748
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Kirilenko;Shawn Mankad;G. Michailidis
  • 通讯作者:
    G. Michailidis
Networks, Interconnectedness, and Interbank Information Asymmetry
网络、互联性和银行间信息不对称
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Celso Brunetti;J. Harris;Shawn Mankad
  • 通讯作者:
    Shawn Mankad

Shawn Mankad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 52.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了