BIGDATA: Collaborative Research: IA: Large-Scale Multi-Parameter Analysis of Honeybee Behavior in their Natural Habitat

BIGDATA:协作研究:IA:蜜蜂自然栖息地行为的大规模多参数分析

基本信息

  • 批准号:
    1633164
  • 负责人:
  • 金额:
    $ 44.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

Honey bees exhibit highly complex behavior and are vital for our agriculture. Due to the rich social organization of bees, the overall performance and health of a bee colony depends both on a successful division of labor among the bees and on adequate reaction to the environment, which involves complex behavioral patterns and biological mechanisms. Much remains to be discovered on these matters as research is currently limited by our ability to effectively collect and analyze individual?s behavior at large scale, out of the laboratory. The technology developed in this project will enable biologists to study the individual behavior of thousands of bees over extended periods of time. It builds on innovative algorithms and software to analyze big data collected from colonies in the field. Study of behavioral patterns at such scale will provide unique information to advance knowledge on biological processes such as circadian rhythms that influence bee behavior in addition to playing an important role in animals and humans. The models developed will help better understand factors involved in colony collapse disorder, thus guiding future research on threats to such an important pollinator. This work will be performed through the tight collaboration of a multi-disciplinary team of researchers to combine the latest advances in computer science and data science with expertise in biology. It will provide the opportunity to train students from underrepresented minority on research at the intersection of these fields and to reach more than 600 undergraduate students, high school students, and the general public about how the Big Data approach can contribute to current scientific and ecological challenges.The project will develop a platform for the high-throughput analysis of individual insect behaviors and gain new insights into the role of individual variations of behavior on bee colony performance. Joint video and sensor data acquisition will monitor marked individuals at multiple colonies over large continuous periods, generating the first datasets of bee activities of this kind on such a scale. Algorithms and software will be developed to take advantage of a High Performance Computing facility to perform the analysis of these massive datasets. Semi-supervised machine learning will leverage the large amount of data available to facilitate the creation of new detectors for parameters such as pollen carrying bees or fanning behavior, currently annotated manually. Predictive models and functional data analysis methods will be developed to find patterns in individual behavior based on multiple parameters and over large temporal scales. These advances are expected to help uncover mechanisms of individual variations previously unobservable. They will enable the first large scale biological study on the circadian rhythms of the bee based on the variations in behavior of individuals in multiple activities instead of reasoning on single activities or averages. Progress, datasets and software will be shared with the community on the project website (sites.google.com/a/upr.edu/bigdbee).
蜜蜂表现出高度复杂的行为,对我们的农业至关重要。由于蜜蜂丰富的社会组织,蜂群的整体表现和健康取决于蜜蜂之间成功的劳动分工和对环境的充分反应,这涉及复杂的行为模式和生物机制。在这些问题上仍有许多有待发现的地方,因为研究目前受到我们有效收集和分析个人数据的能力的限制。在实验室之外的大范围内,该项目开发的技术将使生物学家能够在较长的时间内研究数千只蜜蜂的个体行为。它建立在创新的算法和软件的基础上,分析从野外蜂群收集的大数据。在这样的规模上研究行为模式将提供独特的信息,以推进生物过程的知识,如昼夜节律,影响蜜蜂的行为,除了在动物和人类中发挥重要作用。开发的模型将有助于更好地了解涉及群体崩溃障碍的因素,从而指导未来对这种重要传粉者的威胁的研究。这项工作将通过多学科研究人员团队的紧密合作来完成,联合收割机将计算机科学和数据科学的最新进展与生物学专业知识结合起来。 它将提供机会,培训来自代表性不足的少数民族的学生在这些领域的交叉研究,并达到600多名本科生,高中生,该项目旨在向公众展示大数据方法如何为当前的科学和生态挑战做出贡献。该项目将为高个体昆虫行为的吞吐量分析,并获得新的见解,行为的个体差异对蜂群性能的作用。联合视频和传感器数据采集将在大的连续时间内监测多个殖民地的标记个体,生成这种规模的蜜蜂活动的第一个数据集。将开发算法和软件,以利用高性能计算设施对这些大规模数据集进行分析。半监督机器学习将利用大量可用数据来促进创建新的参数检测器,例如携带花粉的蜜蜂或目前手动注释的扇风行为。将开发预测模型和功能数据分析方法,以根据多个参数和大的时间尺度找到个人行为模式。预计这些进展将有助于揭示以前无法观察到的个体差异机制。它们将使第一个大规模的生物学研究蜜蜂的昼夜节律的基础上,在多个活动,而不是单一的活动或平均推理的个人行为的变化。将在项目网站(sites.google.com/a/upr.edu/bigdbee)上与社区分享进展、数据集和软件。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applying Functional Data Clustering for Analyzing Cycles of Periodic Activity of Honeybees
应用功能数据聚类分析蜜蜂周期性活动的周期
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trespalacios, R.;Acuna, E;Palomino, V.;Agosto, J.;Giannoni-Guzman, M;Megret, R.
  • 通讯作者:
    Megret, R.
Clustering Honeybees by Its Daily Activity [Clustering Honeybees by Its Daily Activity]
按蜜蜂的每日活动进行聚类 [按每日活动对蜜蜂进行聚类]
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Remi Megret其他文献

Remi Megret的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Remi Megret', 18)}}的其他基金

CISE-MSI: DP: SaTC: CyIndiBee - CyberInfrastructure for video analysis of individual bee behavior
CISE-MSI:DP:SaTC:CyIndi​​Bee - 用于单个蜜蜂行为视频分析的网络基础设施
  • 批准号:
    2318597
  • 财政年份:
    2023
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Large-Scale Multi-Parameter Analysis of Honeybee Behavior in their Natural Habitat
BIGDATA:协作研究:IA:蜜蜂自然栖息地行为的大规模多参数分析
  • 批准号:
    1707355
  • 财政年份:
    2016
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 44.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了