BIGDATA: Collaborative Research: F: Efficient Distributed Computation of Large-Scale Graph Problems in Epidemiology and Contagion Dynamics

BIGDATA:协作研究:F:流行病学和传染动力学中大规模图问题的高效分布式计算

基本信息

  • 批准号:
    1633215
  • 负责人:
  • 金额:
    $ 53.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

A number of phenomena of societal importance, such as the spread of diseases andcontagion processes, can be modeled by stochastic processes on networks. The analysis and control of such network phenomena involve, at their heart, fundamental graph-theoretic problems. The graphs encountered are typically of large-scale (having tens of millions of nodes); further, typical experimental analyses involve large designs with a number of parameters, leading to hundreds of thousands of graph computations. Novel methods for solving these problemsare needed, since fast response times are critical to effective decision making.The overarching goal of this project is to develop efficient distributed algorithms and associated lower bounds for graph-theoretic problems that arise in computational epidemiology and contagion dynamics. This will have a significant impact on these specific applications, through more efficient algorithmic tools for enabling complex analyses. The project will also make fundamental contributions to the design and analysis of distributed algorithms for graph problems in large-scale networks, and willresult in an algorithmic toolkit with building blocks for performing large-scale distributed graph computation. The project will lead to significant curriculum development for undergraduate as well as graduate students, as well as public health analysts. Finally, the project will help in involving minority and underrepresented students in research. The technical focus of the project will be on distributed algorithms for fundamental topics in graph algorithms such as graph connectivity, distances, subgraph analysis, and differentkinds of centrality measures. These topics underlie some of the recurring problems in the modeling, simulation and analysis and control of different kinds of contagion processes. For all these problems, the project will focus on developing provably efficient distributed algorithms and showing lower bounds under a message-passing distributed computing model. The PIs will also develop efficient implementations of these algorithms, and evaluate their performance and solution quality in real-world graphs arising in epidemiology. The graphs that arise in these applications have several novel characteristics, which will present new challenges as well as opportunities for distributed computing.
许多具有社会重要性的现象,如疾病的传播和传染过程,可以用网络上的随机过程来模拟。对这种网络现象的分析和控制,其核心是基本的图论问题。所遇到的图通常是大规模的(具有数千万个节点);此外,典型的实验分析涉及具有许多参数的大型设计,导致数十万的图计算。解决这些问题的新方法是必要的,因为快速的响应时间是有效决策的关键。本项目的总体目标是为计算流行病学和传染动力学中出现的图论问题开发有效的分布式算法和相关的下界。 这将对这些特定应用产生重大影响,通过更有效的算法工具来实现复杂的分析。 该项目还将为大规模网络中图问题的分布式算法的设计和分析做出根本性贡献,并将产生一个算法工具包,其中包含用于执行大规模分布式图计算的构建块。 该项目将为本科生和研究生以及公共卫生分析师制定重要的课程。最后,该项目将有助于让少数民族和代表性不足的学生参与研究。该项目的技术重点将是图算法中基本主题的分布式算法,如图连通性,距离,子图分析和不同类型的中心性度量。 这些主题的基础上的一些反复出现的问题,在建模,仿真和分析和控制不同类型的传染过程。 对于所有这些问题,该项目将专注于开发可证明有效的分布式算法,并显示消息传递分布式计算模型下的下限。PI还将开发这些算法的有效实现,并在流行病学中出现的真实世界图形中评估其性能和解决方案质量。 在这些应用中出现的图有几个新的特点,这将提出新的挑战,以及分布式计算的机会。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Statistical Estimation of Matrix Products with Applications
Communication-Efficient Distributed Skyline Computation
A Multi-criteria Approximation Algorithm for Influence Maximization with Probabilistic Guarantees
具有概率保证的影响力最大化的多标准近似算法
A Practical Algorithm for Distributed Clustering and Outlier Detection
  • DOI:
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiecao Chen;Erfan Sadeqi Azer;Qin Zhang
  • 通讯作者:
    Jiecao Chen;Erfan Sadeqi Azer;Qin Zhang
Distributed Partial Clustering
分布式部分集群
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qin Zhang其他文献

Receptor activity‐modifying protein 1 regulates the phenotypic expression of BMSCs via the Hippo/Yap pathway
受体活性-修饰蛋白1通过Hippo/Yap途径调节BMSCs的表型表达
  • DOI:
    10.1002/jcp.28082
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qin Zhang;Yanjun Guo;Hui Yu;Yufei Tang;Ying Yuan;Yixuan Jiang;Huilu Chen;Ping Gong;Lin Xiang
  • 通讯作者:
    Lin Xiang
The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply
肠道微生物群调节剂小檗碱通过促进丁酸盐的产生并调节肠道缺氧和硝酸盐的供应来改善大鼠胶原诱导的关节炎
  • DOI:
    10.1096/fj.201900425rr
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mengfan Yue;Yu Tao;Yulai Fang;Xingpan Lian;Qin Zhang;Yufeng Xia;Zhifeng Wei;Yue Dai
  • 通讯作者:
    Yue Dai
用于工业系统故障诊断的动态不确定因果图的建模和概率推理方法
The lattice vibration and microwave dielectric properties of BaZnP 2− x Nb x O 7 ceramics for microwave substrates
微波基片BaZnP 2·x Nb x O 7 陶瓷的晶格振动和微波介电性能
  • DOI:
    10.1111/jace.18695
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Fangyi Huang;Hua Su;Qin Zhang;Xiao-Hui Wu;Yulan Jing;Yuanxun Li;Xiaoli Tang
  • 通讯作者:
    Xiaoli Tang
Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process
胶体二氧化硅纳米颗粒的表面改性:控制尺寸和接枝过程
  • DOI:
    10.5012/bkcs.2013.34.9.2747
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lijuan Long;Shuhao Qin;Jie Yu;Qin Zhang
  • 通讯作者:
    Qin Zhang

Qin Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qin Zhang', 18)}}的其他基金

Collaborative Research: AF: Small: Parallel Reinforcement Learning with Communication and Adaptivity Constraints
协作研究:AF:小型:具有通信和适应性约束的并行强化学习
  • 批准号:
    2006591
  • 财政年份:
    2020
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
CAREER:Foundation of Communication-Efficient Distributed Computation and Monitoring
职业:通信高效的分布式计算和监控的基础
  • 批准号:
    1844234
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Continuing Grant
AF: Small: Redundancy exploiting algorithms for high throughput genomics
AF:小:利用冗余算法实现高通量基因组学
  • 批准号:
    1619081
  • 财政年份:
    2016
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
AF: Small: Efficient Algorithms for Querying Noisy Distributed/Streaming Datasets
AF:小:查询嘈杂分布式/流数据集的高效算法
  • 批准号:
    1525024
  • 财政年份:
    2015
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 53.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了