BIGDATA: Collaborative Research: F: Association Analysis of Big Graphs: Models, Algorithms and Applications

BIGDATA:协作研究:F:大图关联分析:模型、算法和应用

基本信息

  • 批准号:
    1633271
  • 负责人:
  • 金额:
    $ 25.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Association analysis is a fundamental problem in Big Data analytics. Emerging applications require computationally efficient association models and scalable association mining techniques to find regularities of graph data. Conventional association analysis for transactional data is hard or infeasible to be adapted to effectively support the next generation of graph data analytics, especially under limited computing resources. In this project, the PIs develop models, algorithms and tools to support association analysis over large-scale graph data under resource constraints. The project formulates new variants of the conventional association model that are enhanced by advanced capability of graph queries. Both exact and approximate querying and mining paradigms are explored to support effective association analysis over multi-source, large-scale, and fast-changing graph data. The PIs instantiate the generic framework to two practical association analysis scenarios, notably, a) multi-graph association analysis, and b) association detection over graph streams. The project develops a package of distributed and stream association mining techniques supported by the proposed generic model and algorithms.The enhanced model and algorithms enable scalable association analysis in a wide range of massive data applications. The principles learned from this project can be applied to big data analytics and system design in general. The study of new association analysis framework has immediate applications in emerging areas, including data quality, affinity marketing, and network security. Application collaborators of the project include Pacific Northwest National Laboratory, LogicMonitor, and Facebook. Broader impacts of the project also include research training and education of students including women and minorities, and design of new curricula and education tools that target both CS and non-CS students.
关联分析是大数据分析中的一个基本问题。新兴的应用程序需要计算效率高的关联模型和可扩展的关联挖掘技术,以发现图数据集。 针对事务数据的传统关联分析难以或不可行地适于有效地支持下一代图数据分析,特别是在有限的计算资源下。 在这个项目中,PI开发模型,算法和工具,以支持在资源限制下对大规模图数据进行关联分析。 该项目制定了传统的关联模型,增强了先进的图形查询能力的新变种。精确和近似的查询和挖掘模式进行了探索,以支持有效的关联分析多源,大规模,快速变化的图形数据。PI将通用框架实例化到两个实际的关联分析场景,特别是a)多图关联分析和B)图流上的关联检测。该项目开发了一套分布式和流关联挖掘技术,并在所提出的通用模型和算法的支持下,增强的模型和算法使可扩展的关联分析在广泛的海量数据应用。从这个项目中学到的原则可以应用于大数据分析和系统设计。新的关联分析框架的研究在新兴领域,包括数据质量,亲和营销和网络安全的直接应用。该项目的应用合作者包括太平洋西北国家实验室,LogicMonitor和Facebook。该项目的更广泛影响还包括对包括妇女和少数民族在内的学生进行研究、培训和教育,以及设计新的课程和教育工具,以CS和非CS学生为目标。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finding Densest Lasting Subgraphs in Dynamic Graphs: A Stochastic Approach
Mining Dynamic Graph Streams for Predictive Queries Under Resource Constraints
A Stochastic Approach to Finding Densest Temporal Subgraphs in Dynamic Graphs
寻找动态图中最密集时间子图的随机方法
Selective Edge Shedding in Large Graphs Under Resource Constraints
Online Indices for Predictive Top-k Entity and Aggregate Queries on Knowledge Graphs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tingjian Ge其他文献

Labeled graph sketches: Keeping up with real-time graph streams
带标签的图形草图:跟上实时图形流
  • DOI:
    10.1016/j.ins.2019.07.019
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song Chunyao;Tingjian Ge;Yao Ge;Haowen Zhang;Xiaojie Yuan
  • 通讯作者:
    Xiaojie Yuan
On Security of Proof-of-Policy (PoP) in the Execute-Order-Validate Blockchain Paradigm
执行-订单-验证区块链范式中策略证明(PoP)的安全性
Reduction of large-scale graphs: Effective edge shedding at a controllable ratio under resource constraints
大规模图的缩减:资源约束下可控比例的有效边缘脱落
  • DOI:
    10.1016/j.knosys.2022.108126
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Yiling Zeng;Chunyao Song;Tingjian Ge;Ying Zhang
  • 通讯作者:
    Ying Zhang
History is a mirror to the future: Best-effort approximate complex event matching with insufficient resources
历史是未来的镜子:资源不足的情况下尽力近似复杂事件匹配
BEAMS: Bounded Event Detection in Graph Streams
BEAMS:图流中的有界事件检测

Tingjian Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tingjian Ge', 18)}}的其他基金

III: Small: Temporal Relational Triples, or TR2: A Novel Data and Knowledge System for Temporal and Streaming Data
III:小:时态关系三元组,或 TR2:用于时态和流数据的新颖数据和知识系统
  • 批准号:
    2124704
  • 财政年份:
    2021
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Fast Tools for Complex Event Detection over Bipartite Graph Streams
协作研究:OAC Core:二分图流上复杂事件检测的快速工具
  • 批准号:
    2106740
  • 财政年份:
    2021
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
III: Small: QUEST: An Integrated Query and Event System on Noisy Streams and Tables
III:小:QUEST:一个关于嘈杂流和表的集成查询和事件系统
  • 批准号:
    1319600
  • 财政年份:
    2013
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Continuing Grant
CAREER: MUSE: An Integrated Approach to Managing Uncertain Scientific Experimental Data
职业:MUSE:管理不确定科学实验数据的综合方法
  • 批准号:
    1149417
  • 财政年份:
    2012
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Continuing Grant
III: Small: Rural: Querying Rich Uncertain Data in Real Time
三:小:农村:实时查询丰富的不确定数据
  • 批准号:
    1239176
  • 财政年份:
    2012
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Continuing Grant
III: Small: Rural: Querying Rich Uncertain Data in Real Time
三:小:农村:实时查询丰富的不确定数据
  • 批准号:
    1017452
  • 财政年份:
    2010
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Continuing Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了