BIGDATA: Collaborative Research: IA: F: Latent and Graphical Models for Complex Dependent Data in Education
BIGDATA:协作研究:IA:F:教育中复杂相关数据的潜在模型和图形模型
基本信息
- 批准号:1633353
- 负责人:
- 金额:$ 31.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a comprehensive research proposal on the statistical modeling and analysis for educational assessment. This research addresses issues concerning fundamental statistical problems that arise in the analysis of Big Data in education. The research focus is on modeling and inference for large-scale data with complex dependence and structures (such as high-dimensional response and process data). These data arise from the introduction of new methods of testing student knowledge that rely on scenarios presented to the students and on simulation-based environments where student responses to a simulated environment are tested. This research is collaborative between Columbia University and the Educational Testing Service.The topics studied include latent graphical modeling for high-dimensional item response data, modeling and segmentation of process data via dictionary models, estimation of item-attribute relationship, dimension reduction, theoretical analysis and computational methods for the proposed models. The analysis combines techniques and concepts from mathematics and probability and applies them to nonlinear statistical models and data analysis. The proposed model combines latent variable and graphical approaches for high-dimensional data; for modeling process data, recent advances in modeling and segmenting techniques for natural language processing will be investigated. In the theoretical development, several algebraic concepts to formulate model identifiability and perform combinatorial analysis on high-dimensional discrete spaces will be studied. In addition, optimization algorithms will be developed using recent advances in numerical methods.
这是一份关于教育评价统计建模与分析的综合性研究方案。本研究解决了在教育大数据分析中出现的基本统计问题。研究重点是具有复杂依赖关系和结构的大规模数据(如高维响应和过程数据)的建模和推理。这些数据来源于测试学生知识的新方法的引入,这些方法依赖于向学生展示的场景和基于模拟的环境,在模拟环境中测试学生对模拟环境的反应。这项研究是哥伦比亚大学和美国教育考试服务中心合作进行的。研究课题包括高维项目响应数据的潜在图形化建模、基于字典模型的过程数据建模和分割、项目属性关系估计、降维、模型的理论分析和计算方法。该分析结合了数学和概率论的技术和概念,并将其应用于非线性统计模型和数据分析。该模型结合了高维数据的潜变量和图形方法;对于过程数据建模,将研究自然语言处理的建模和分割技术的最新进展。在理论发展中,几个代数概念,以制定模型可识别性和执行高维离散空间的组合分析将被研究。此外,优化算法将开发利用数值方法的最新进展。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developments in Psychometric Population Models for Technology-Based Large-Scale Assessments: An Overview of Challenges and Opportunities
- DOI:10.3102/1076998619881789
- 发表时间:2019-10
- 期刊:
- 影响因子:2.4
- 作者:Matthias von Davier;Lale Khorramdel;Qiwei He;H. Shin;Haiwen Chen
- 通讯作者:Matthias von Davier;Lale Khorramdel;Qiwei He;H. Shin;Haiwen Chen
Mapping Background Variables With Sequential Patterns in Problem-Solving Environments: An Investigation of United States Adults’ Employment Status in PIAAC
- DOI:10.3389/fpsyg.2019.00646
- 发表时间:2019-03
- 期刊:
- 影响因子:3.8
- 作者:Dandan Liao;Qiwei He;Hong Jiao
- 通讯作者:Dandan Liao;Qiwei He;Hong Jiao
Latent Feature Extraction for Process Data via Multidimensional Scaling
- DOI:10.1007/s11336-020-09708-3
- 发表时间:2020-06-22
- 期刊:
- 影响因子:3
- 作者:Tang, Xueying;Wang, Zhi;Ying, Zhiliang
- 通讯作者:Ying, Zhiliang
Use of Response Process Data to Inform Group Comparisons and Fairness Research
使用响应过程数据为群体比较和公平性研究提供信息
- DOI:10.1080/10627197.2020.1804353
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Ercikan, Kadriye;Guo, Hongwen;He, Qiwei
- 通讯作者:He, Qiwei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiwei He其他文献
Luminescent properties of Lu2MoO6:Eu3+ red phosphor for solid state lighting
固态照明用Lu2MoO6:Eu3红色荧光粉的发光特性
- DOI:
10.1016/s1003-6326(16)64276-0 - 发表时间:
2016-06 - 期刊:
- 影响因子:4.5
- 作者:
Li Li;Jun Shen;Xianju Zhou;Yu Pan;Wenxuan Chang;Qiwei He;Xiantao Wei - 通讯作者:
Xiantao Wei
Multiple‐Group Joint Modeling of Item Responses, Response Times, and Action Counts with the Conway‐Maxwell‐Poisson Distribution
使用 Conway-Maxwell-Poisson 分布对项目响应、响应时间和动作计数进行多组联合建模
- DOI:
10.1111/jedm.12349 - 发表时间:
2022 - 期刊:
- 影响因子:1.3
- 作者:
Xin Qiao;Hong Jiao;Qiwei He - 通讯作者:
Qiwei He
Algorithm of Word-Lattice Parsing Based on Improved CYK-Algorithm
基于改进CYK算法的词格解析算法
- DOI:
10.1109/wism.2010.131 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yuqiang Sun;Lei Zhou;Qiwei He;Yuwan Gu;Liang Jia - 通讯作者:
Liang Jia
Mapping sex-determination region and screening DNA markers for genetic sex identification in largemouth bass (emMicropterus salmoides/em)
大口黑鲈(Micropterus salmoides)性别决定区域定位及遗传性别鉴定 DNA 标记筛选
- DOI:
10.1016/j.aquaculture.2022.738450 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:3.900
- 作者:
Qiwei He;Kun Ye;Wei Han;Dinaer Yekefenhazi;Sha Sun;Xiandong Xu;Wanbo Li - 通讯作者:
Wanbo Li
Qiwei He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 31.96万 - 项目类别:
Standard Grant