BIGDATA: Collaborative Research: F: Discovering Context-Sensitive Impact in Complex Systems

BIGDATA:协作研究:F:发现复杂系统中的上下文敏感影响

基本信息

  • 批准号:
    1633330
  • 负责人:
  • 金额:
    $ 36.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Successfully tackling many urgent challenges in socio-economically critical domains (such as sustainability, public health, and biology) requires obtaining a deeper understanding of complex relationships and interactions among a diverse spectrum of entities in different contexts. In complex systems, (a) it is critical to discover how one object influences others within specific contexts, rather than seeking an overall measure of impact, and (b) the context-aware understanding of impact has the potential to transform the way people explore, search, and make decisions in complex systems. This project establishes the foundations of big data driven Context-Sensitive Impact Discovery (CSID) in complex systems and fills an important hole in big data driven decision making in many critical application domains, including epidemic preparedness, biological pathway analysis, climate, and resilient water/energy infrastructures. Thus, it enables applications and services with significant economic and health impact. The educational impacts of this project include the mentoring of graduate and undergraduate students, and the enhancement of graduate and undergraduate Computer Science curricula at both Arizona State University (ASU) and New Mexico State University (NMSU) through the incorporation of research challenges and outcomes into existing classes. The technical goal of this project is to establish the theoretical, algorithmic, and computational foundations of big data driven context-sensitive impact discovery in complex systems. This project develops probabilistic and tensor-based models to capture context-sensitive impact from complex systems, often modeled as graphs, and designs efficient learning algorithms that can capture both the contexts and the impact scores among entities within these different contexts. The modeling of the context sensitive impact considers dynamic nature of relevant contexts and the diverse applications. This requires addressing several major challenges, including latent contexts of impact, heterogeneous networks of entities, dynamicity of impact in varying contexts, and high computational and I/O costs of context-sensitive impact discovery. Therefore, this project designs novel scalable probabilistic and tensor-based algorithms to capture and represent context-sensitive impact. These algorithms and the novel data platforms they are deployed in are efficient and scalable in terms of off-line and on-line running times and their space requirements. To achieve necessary scalabilities, the developed platforms employ novel multi-resolution data partitioning and resource allocation strategies and the research enables massive parallelism and efficient data access through new non-volatile memory based data management techniques.
成功应对社会经济关键领域(如可持续性、公共卫生和生物学)的许多紧迫挑战,需要更深入地了解不同背景下各种实体之间的复杂关系和相互作用。在复杂系统中,(A)关键是要发现一个对象如何影响特定环境中的其他对象,而不是寻求影响的总体衡量标准,以及(B)对影响的上下文感知理解有可能改变人们在复杂系统中探索、搜索和决策的方式。该项目为复杂系统中的大数据驱动的上下文敏感影响发现(CSID)奠定了基础,并填补了许多关键应用领域中大数据驱动的决策的重要漏洞,包括疫情防范、生物路径分析、气候和有弹性的水/能源基础设施。因此,它使具有重大经济和健康影响的应用程序和服务成为可能。该项目的教育影响包括指导研究生和本科生,并通过将研究挑战和成果纳入现有班级,加强亚利桑那州立大学(ASU)和新墨西哥州立大学(NMSU)的研究生和本科生计算机科学课程。该项目的技术目标是为复杂系统中大数据驱动的上下文敏感影响发现奠定理论、算法和计算基础。该项目开发了基于概率和张量的模型来捕获复杂系统的上下文敏感影响,通常建模为图,并设计了高效的学习算法,可以捕获上下文和这些不同上下文中实体之间的影响分数。情境敏感影响的建模考虑了相关情境和不同应用的动态性。这需要解决几个主要挑战,包括潜在的影响背景、不同的实体网络、在不同背景下影响的动态化,以及上下文敏感影响发现的高昂计算和I/O成本。因此,本项目设计了新的可扩展的概率和基于张量的算法来捕获和表示上下文敏感的影响。这些算法和它们所部署的新型数据平台在离线和在线运行时间及其空间要求方面都是高效和可扩展的。为了实现必要的可扩展性,开发的平台采用了新颖的多分辨率数据分区和资源分配策略,研究通过基于非易失性存储器的新数据管理技术实现了大规模并行和高效的数据访问。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Attention Mechanism to Classify Multivariate Time Series
一种新的注意力机制来对多元时间序列进行分类
Sub-Gibbs Sampling: A New Strategy for Inferring LDA
亚吉布斯采样:推断 LDA 的新策略
Multi-criteria and Review-Based Overall Rating Prediction
多标准和基于评论的总体评分预测
CSQ System: A System to Support Constrained Skyline Queries on Transportation Networks
CSQ 系统:支持交通网络受限天际线查询的系统
Identify Significant Phenomenon-Specific Variables for Multivariate Time Series
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huiping Cao其他文献

Beef Production in the Southwestern United States: Strategies Toward Sustainability
美国西南部的牛肉生产:可持续发展战略
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    S. Spiegal;A. Cibils;B. Bestelmeyer;J. Steiner;R. Estell;D. Archer;B. Auvermann;S. Bestelmeyer;L. Boucheron;Huiping Cao;A. Cox;D. Devlin;G. Duff;Kristy K. Ehlers;E. Elias;C. Gifford;A. González;J. Holland;J. Jennings;A. Marshall;D. McCracken;M. McIntosh;Rhonda L. Miller;Mark Musumba;R. Paulin;S. Place;M. Redd;C. Rotz;C. Tolle;A. Waterhouse
  • 通讯作者:
    A. Waterhouse
External Factors Affecting Determination of Mineral Filler Contact Angle with Capillary Rise Method
影响毛细管上升法测定矿物填料接触角的外部因素
YOLOv8-BS: An integrated method for identifying stationary and moving behaviors of cattle with a newly developed dataset
YOLOv8-BS:一种利用新开发的数据集识别牛的静止和移动行为的综合方法
  • DOI:
    10.1016/j.atech.2025.101153
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Md Ishtiaq Ahmed;Huiping Cao;Andrés Ricardo Perea;Mehmet Emin Bakir;Huiying Chen;Santiago A. Utsumi
  • 通讯作者:
    Santiago A. Utsumi
Comparison of machine learning and electrical resistivity arrays to inverse modeling for locating and characterizing subsurface targets
  • DOI:
    10.1016/j.jappgeo.2024.105493
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahsan Jamil;Dale F. Rucker;Dan Lu;Scott C. Brooks;Alexandre M. Tartakovsky;Huiping Cao;Kenneth C. Carroll
  • 通讯作者:
    Kenneth C. Carroll
Integrating LoRaWAN sensor networks and machine learning models to classify beef cattle behavior on arid rangelands of the southwestern United States
将 LoRaWAN 传感器网络与机器学习模型相集成,以对美国西南部干旱草原上的肉牛行为进行分类
  • DOI:
    10.1016/j.atech.2025.101002
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Andres Perea;Sajidur Rahman;Huiying Chen;Andrew Cox;Shelemia Nyamuryekung’e;Mehmet Bakir;Huiping Cao;Richard Estell;Brandon Bestelmeyer;Andres F. Cibils;Santiago A. Utsumi
  • 通讯作者:
    Santiago A. Utsumi

Huiping Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huiping Cao', 18)}}的其他基金

Travel: III: Student Travel Support for 2023 ACM International Conference on Web Search and Data Mining (WSDM)
差旅:III:2023 年 ACM 网络搜索和数据挖掘国际会议 (WSDM) 学生差旅支持
  • 批准号:
    2245056
  • 财政年份:
    2023
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Travel: III: Student Travel Support for 2022 ACM International Conference on Web Search and Data Mining (WSDM)
差旅:III:2022 年 ACM 网络搜索和数据挖掘国际会议 (WSDM) 学生差旅支持
  • 批准号:
    2154473
  • 财政年份:
    2022
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
REU Site: BIGDatA - Big Data Analytics for Cyber-physical Systems
REU 网站:BIGDatA - 网络物理系统的大数据分析
  • 批准号:
    1950121
  • 财政年份:
    2020
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
Preparing Highly Qualified Students with Financial Need for Careers in Computing and Cyber-Security through Evidence-Based Educational Practices
通过循证教育实践,为有经济需要的高素质学生做好计算机和网络安全职业的准备
  • 批准号:
    1833630
  • 财政年份:
    2018
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
REU Site: BIGDatA - Big Data Analytics for Cyber-Physical Systems
REU 网站:BIGDatA - 网络物理系统的大数据分析
  • 批准号:
    1559723
  • 财政年份:
    2016
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了