BIGDATA: Collaborative Research: IA: OSCAR - Open Source Supply Chains and Avoidance of Risk: An Evidence Based Approach to Improve FLOSS Supply Chains

BIGDATA:协作研究:IA:OSCAR - 开源供应链和风险规避:改进 FLOSS 供应链的基于证据的方法

基本信息

  • 批准号:
    1633437
  • 负责人:
  • 金额:
    $ 130万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Open source software is an engine for innovation and a critical infrastructure for the nation and yet it is implemented by communities formed from a loose collection of individuals. With each software project relying on thousands of other software projects, this complex and dynamic supply chain introduces new risks and unpredictability, since, unlike in traditional software projects, no contractual relationships with the community exist and individuals could simply lose interest or move on to other activities.The big data-based approach to software supply chains will stimulate academic and practical work. The tools and practices to quantify and mitigate risks in the rapidly changing global environment with no centralized control or authority will lead to dramatic reductions in risk manifested in, for example, the spread of vulnerabilities thus making the nation both safer and more innovative. The theoretical frameworks and approaches developed will likely influence research and practice in other supply chain contexts.The objective of this research is to advance the state of knowledge of software supply chains by collecting and integrating massive public operational data representing development activity and source code from all open source projects and using it to develop novel theories, methods, and tools. The construction and analysis of the entire open source supply chain provides static and dynamic properties of the network, risk propagation, and system-level risks. Novel statistical and game-theoretic models are used to assess and mitigate these risks, while methods to contextualize, augment, and correct operational data provide ways to cope with data?s size, complexity, and observational nature.
开源软件是创新的引擎,是国家的关键基础设施,但它是由松散的个人集合组成的社区实现的。由于每个软件项目都依赖于成千上万的其他软件项目,这种复杂而动态的供应链引入了新的风险和不可预测性,因为与传统软件项目不同,与社区不存在合同关系,个人可能会失去兴趣或转移到其他活动。基于大数据的软件供应链方法将刺激学术和实际工作。在没有集中控制或权威的快速变化的全球环境中,量化和减轻风险的工具和实践将导致风险的大幅减少,例如,脆弱性的蔓延,从而使国家更安全,更创新。所开发的理论框架和方法可能会影响其他供应链背景下的研究和实践。本研究的目标是通过收集和集成代表开发活动和所有开源项目源代码的大量公共操作数据,并使用它来开发新的理论、方法和工具,来推进软件供应链的知识状态。整个开源供应链的构建和分析提供了网络、风险传播和系统级风险的静态和动态特性。新的统计和博弈论模型用于评估和减轻这些风险,而情境化、增强和纠正操作数据的方法提供了处理数据的方法。S的大小、复杂性和可观察性。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Companies’ Participation in OSS Development–An Empirical Study of OpenStack
  • DOI:
    10.1109/tse.2019.2946156
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Yuxia Zhang;Minghui Zhou;A. Mockus;Zhi Jin
  • 通讯作者:
    Yuxia Zhang;Minghui Zhou;A. Mockus;Zhi Jin
A Complete Set of Related Git Repositories Identified via Community Detection Approaches Based on Shared Commits
基于共享提交的社区检测方法识别出的一整套相关Git存储库
Insights from open source software supply chains
来自开源软件供应链的见解
Experiences on Clustering High-Dimensional Data using pbdR
使用pbdR对高维数据进行聚类的经验
Deriving a usage-independent software quality metric
  • DOI:
    10.1007/s10664-019-09791-w
  • 发表时间:
    2020-02-19
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Dey, Tapajit;Mockus, Audris
  • 通讯作者:
    Mockus, Audris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Audris Mockus其他文献

箏曲・地歌のXML 記述とその応用
古筝九塔的XML描述及其应用
古楽譜及び未解読楽譜のデータベース化のためのソフトウェアの設計
用于创建旧乐谱和未破译乐谱数据库的软件设计
A Web laboratory for software data analysis
Inflow and Retention in OSS Communities with Commercial Involvement: A Case Study of Three Hybrid Projects.
商业参与的 OSS 社区的流入和保留:三个混合项目的案例研究。
Bonobos in forest-savanna mosaic environment: development and perspectives of our newly launched wild bonobo research site
森林-稀树草原镶嵌环境中的倭黑猩猩:我们新启动的野生倭黑猩猩研究基地的发展和前景
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kazuhiro Yamashita;Changyun Huang;Meiyappan Nagappan;Yasutaka Kamei;Audris Mockus;Ahmed E. Hassan and Naoyasu Ubayashi;Yamamoto S.
  • 通讯作者:
    Yamamoto S.

Audris Mockus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Audris Mockus', 18)}}的其他基金

Collaborative Research: CCRI: New: World Of Code (WoC): The development of curated code resource to support research in software engineering
合作研究:CCRI:新:代码世界 (WoC):开发精选代码资源以支持软件工程研究
  • 批准号:
    2120429
  • 财政年份:
    2021
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: SDI-CPR: Sustaining Digital Infrastructure as a Common Pool Resource
CHS:中:协作研究:SDI-CPR:将数字基础设施维持为公共池资源
  • 批准号:
    1901102
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
CCRI: Collaborative Research: Planning for World Of Code (WoC): An Infrastructure for Open Source Software Census
CCRI:协作研究:规划代码世界(WoC):开源软件普查的基础设施
  • 批准号:
    1925615
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了