BIGDATA: Collaborative Research: F: Algorithmic Fairness: A Systemic and Foundational Treatment of Nondiscriminatory Data Mining

BIGDATA:协作研究:F:算法公平性:非歧视性数据挖掘的系统性和基础性处理

基本信息

  • 批准号:
    1633724
  • 负责人:
  • 金额:
    $ 48.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Data-driven modeling has moved beyond the realm of consumer predictions and recommendations into areas of policy and planning that have a profound impact on our daily lives. The tools of data analysis are being harnessed to predict crime, select candidates for jobs, identify security threats, determine credit risk, and even decide treatment plans and interventions for patients. Automated learning and mining tools can crunch incredible amounts and variety of data in order to detect patterns and make predictions. As is rapidly becoming clear, these tools can also introduce discriminatory behavior and amplify biases in the systems they are trained on. In this project, the PIs will study the problems of discrimination and bias in algorithmic decision-making. By studying all aspects of the data pipeline (from data preparation to learning, evaluation, and feedback), they will develop tools for analyzing, auditing, and designing automated decision-making systems that will be fair, accountable, and transparent. As specific goals to broaden the impact of this research, the PIs will develop a course curriculum to educate the next generation of data scientists on the ethical, legal, and societal implications of algorithmic decision-making, with the intent that they will then take this understanding into their jobs as they enter the workforce. Initial efforts by the PIs have attracted students from underrepresented groups in computer science, and they will continue these efforts. The PIs will also explore the legal and policy ramifications of this research, and develop best practice guidelines for the use of their tools by policy makers, lawyers, journalists, and other practitioners.The PIs will explore the technical subject of this project in three ways. Firstly, they will develop a sound theoretical framework for reasoning about algorithmic fairness. This framework carefully separates mechanisms, beliefs, and assumptions in order to make explicit implicitly held assumptions about the nature of fairness in learning. Secondly, by examining the entire pipeline of tasks associated with learning, they will identify hitherto unexplored areas where bias may be unintentionally introduced into learning as well as novel problems associated with ensuring fairness. These include the initial stages of data preparation, various kinds of fairness-aware learning, and evaluation. They will also investigate the problem of feedback: when actions based on a biased learned model might cause a feedback loop that changes reality and leads to more bias.
数据驱动的建模已经超越了消费者预测和建议的领域,进入了对我们日常生活产生深远影响的政策和规划领域。数据分析工具正被用于预测犯罪,选择工作候选人,识别安全威胁,确定信用风险,甚至决定患者的治疗计划和干预措施。自动化学习和挖掘工具可以处理数量惊人的各种数据,以检测模式并进行预测。正如人们迅速变得清楚的那样,这些工具也可以引入歧视性行为,并放大它们所训练的系统中的偏见。在这个项目中,PI将研究算法决策中的歧视和偏见问题。通过研究数据管道的各个方面(从数据准备到学习,评估和反馈),他们将开发用于分析,审计和设计公平,负责和透明的自动化决策系统的工具。作为扩大这项研究影响的具体目标,PI将开发一门课程,教育下一代数据科学家关于算法决策的伦理、法律的和社会影响,目的是让他们在进入劳动力市场时将这种理解融入工作中。PI的初步努力吸引了来自计算机科学代表性不足群体的学生,他们将继续这些努力。研究所还将探讨这一研究的法律的和政策影响,并为决策者、律师、记者和其他从业人员使用其工具制定最佳实践指南。首先,他们将开发一个合理的理论框架来推理算法的公平性。这个框架仔细分离机制,信念和假设,以使明确隐含的假设,在学习中的公平性的性质。其次,通过检查与学习相关的整个任务流程,他们将确定迄今为止尚未探索的领域,这些领域可能会无意中引入偏见,以及与确保公平相关的新问题。这些包括数据准备的初始阶段,各种公平意识学习和评估。他们还将研究反馈的问题:基于有偏见的学习模型的行为可能会导致一个改变现实并导致更多偏见的反馈循环。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fairness and Abstraction in Sociotechnical Systems
Decision making with limited feedback: Error bounds for predictive policing and recidivism prediction
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Ensign;Sorelle A. Frielder;Scott Neville;Carlos Scheidegger;Suresh Venkatasubramanian;M. Mohri;Karthik Sridharan
  • 通讯作者:
    D. Ensign;Sorelle A. Frielder;Scott Neville;Carlos Scheidegger;Suresh Venkatasubramanian;M. Mohri;Karthik Sridharan
Auditing Black-Box Models for Indirect Influence
审计黑盒模型的间接影响
  • DOI:
    10.1109/icdm.2016.0011
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adler, Philip;Falk, Casey;Friedler, Sorelle A.;Rybeck, Gabriel;Scheidegger, Carlos;Smith, Brandon;Venkatasubramanian, Suresh
  • 通讯作者:
    Venkatasubramanian, Suresh
Disentangling Influence: Using disentangled representations to audit model predictions
解缠结影响:使用解缠结表示来审核模型预测
Fairness in representation: quantifying stereotyping as a representational harm
代表性的公平性:将刻板印象量化为代表性伤害
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suresh Venkatasubramanian其他文献

Rectangular layouts and contact graphs
矩形布局和接触图
  • DOI:
    10.1145/1328911.1328919
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Buchsbaum;E. Gansner;Cecilia M. Procopiuc;Suresh Venkatasubramanian
  • 通讯作者:
    Suresh Venkatasubramanian
Computational geometry column 55: new developments in nonnegative matrix factorization
计算几何专栏55:非负矩阵分解的新进展
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suresh Venkatasubramanian
  • 通讯作者:
    Suresh Venkatasubramanian
Active Online Multitask Learning
主动在线多任务学习
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Saha;Piyush Rai;Hal Daumé;Suresh Venkatasubramanian
  • 通讯作者:
    Suresh Venkatasubramanian
You Still See Me: How Data Protection Supports the Architecture of ML Surveillance
你仍然看到我:数据保护如何支持机器学习监控架构
  • DOI:
    10.48550/arxiv.2402.06609
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui;Lucy Qin;Suresh Venkatasubramanian
  • 通讯作者:
    Suresh Venkatasubramanian
Sketching, Embedding, and Dimensionality Reduction for Information Spaces
信息空间的草图、嵌入和降维
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Abdullah;Ravi Kumar;A. Mcgregor;Sergei Vassilvitskii;Suresh Venkatasubramanian
  • 通讯作者:
    Suresh Venkatasubramanian

Suresh Venkatasubramanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suresh Venkatasubramanian', 18)}}的其他基金

BIGDATA: Small: DA: Collaborative Research: From Data to Users: Providing Interpretable and Verifiable Explanations in Data Mining
BIGDATA:小:DA:协作研究:从数据到用户:在数据挖掘中提供可解释和可验证的解释
  • 批准号:
    1251049
  • 财政年份:
    2013
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
AF: Small: Synopsis Data Structures for Data Analysis in Shape Spaces
AF:小:形状空间中数据分析的概要数据结构
  • 批准号:
    1115677
  • 财政年份:
    2011
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
CAREER: Geometric Algorithms For Data Analysis In Spaces Of Distributions
职业:分布空间数据分析的几何算法
  • 批准号:
    0953066
  • 财政年份:
    2010
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Continuing Grant
SGER: Scalable Shape Analysis in Non-Euclidean Spaces with Provable Guarantees
SGER:具有可证明保证的非欧几里得空间中的可扩展形状分析
  • 批准号:
    0841185
  • 财政年份:
    2009
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
Workshop on Computational Geometry and Visualization
计算几何与可视化研讨会
  • 批准号:
    0602527
  • 财政年份:
    2005
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 48.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了