BIGDATA: Collaborative Research: F: Association Analysis of Big Graphs: Models, Algorithms and Applications
BIGDATA:协作研究:F:大图关联分析:模型、算法和应用
基本信息
- 批准号:1633629
- 负责人:
- 金额:$ 32.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Association analysis is a fundamental problem in Big Data analytics. Emerging applications require computationally efficient association models and scalable association mining techniques to find regularities of graph data. Conventional association analysis for transactional data is hard or infeasible to be adapted to effectively support the next generation of graph data analytics, especially under limited computing resources. In this project, the PIs develop models, algorithms and tools to support association analysis over large-scale graph data under resource constraints. The project formulates new variants of the conventional association model that are enhanced by advanced capability of graph queries. Both exact and approximate querying and mining paradigms are explored to support effective association analysis over multi-source, large-scale, and fast-changing graph data. The PIs instantiate the generic framework to two practical association analysis scenarios, notably, a) multi-graph association analysis, and b) association detection over graph streams. The project develops a package of distributed and stream association mining techniques supported by the proposed generic model and algorithms.The enhanced model and algorithms enable scalable association analysis in a wide range of massive data applications. The principles learned from this project can be applied to big data analytics and system design in general. The study of new association analysis framework has immediate applications in emerging areas, including data quality, affinity marketing, and network security. Application collaborators of the project include Pacific Northwest National Laboratory, LogicMonitor, and Facebook. Broader impacts of the project also include research training and education of students including women and minorities, and design of new curricula and education tools that target both CS and non-CS students.
关联分析是大数据分析中的一个基本问题。新兴的应用需要计算效率高的关联模型和可扩展的关联挖掘技术来发现图数据的规律性。传统的事务数据关联分析很难或不可行地适用于有效地支持下一代图数据分析,特别是在计算资源有限的情况下。在这个项目中,PI开发了模型、算法和工具,以支持在资源受限的情况下对大规模图形数据进行关联分析。该项目制定了传统关联模型的新变体,并通过高级图形查询功能进行了增强。探索了精确和近似的查询和挖掘范例,以支持对多源、大规模和快速变化的图形数据进行有效的关联分析。PI将通用框架实例化为两个实际的关联分析场景,特别是a)多图关联分析,以及b)图流上的关联检测。该项目开发了一套分布式和流关联挖掘技术,在所提出的通用模型和算法的支持下,增强的模型和算法能够在广泛的海量数据应用中实现可伸缩的关联分析。从这个项目中学到的原则一般可以应用于大数据分析和系统设计。新的关联分析框架的研究在数据质量、亲和力营销和网络安全等新兴领域都有直接的应用。该项目的应用程序协作者包括太平洋西北国家实验室、LogicMonitor和Facebook。该项目的更广泛影响还包括对包括妇女和少数群体在内的学生的研究、培训和教育,以及设计新的课程和教育工具,既针对CS学生,也针对非CS学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yinghui Wu其他文献
Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells
了解 Cu-In-Ga-S 纳米颗粒致密性对钙钛矿太阳能电池空穴传输的影响
- DOI:
10.3390/nano9020286 - 发表时间:
2019 - 期刊:
- 影响因子:5.3
- 作者:
D;an Zhao;Yinghui Wu;Bao Tu;Guichuan Xing;Haifeng Li;Zhubing He - 通讯作者:
Zhubing He
放射線の健康リスク科学教育は従来の放射線教育とどこが違うのか
辐射健康风险科学教育与传统辐射教育有何不同?
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kunichika Matsumoto;Simpei Hanaoka;Yinghui Wu;Tomonori Hasegawa;神田玲子 - 通讯作者:
神田玲子
Demonstration of Geyser: Provenance Extraction and Applications over Data Science Scripts
Geyser 演示:数据科学脚本的来源提取和应用
- DOI:
10.1145/3555041.3589717 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fotis Psallidas;Megan Leszczynski;M. Namaki;Avrilia Floratou;Ashvin Agrawal;Konstantinos Karanasos;Subru Krishnan;Pavle Subotić;Markus Weimer;Yinghui Wu;Yiwen Zhu - 通讯作者:
Yiwen Zhu
Oxidative Stress and Inflammation in Sows with Excess Backfat: Up-Regulated Cytokine Expression and Elevated Oxidative Stress Biomarkers in Placenta
背膘过多母猪的氧化应激和炎症:胎盘中细胞因子表达上调和氧化应激生物标志物升高
- DOI:
10.3390/ani9100796 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yuanfei Zhou;Tao Xu;Yinghui Wu;Hongkui Wei;Jian Peng - 通讯作者:
Jian Peng
Synergy Effect of Both 2,2,2-Trifluoroethylamine Hydrochloride and SnF2 for Highly Stable FASnI3-xClx Perovskite Solar Cells
2,2,2-三氟乙胺盐酸盐和 SnF2 对高稳定 FASnI3-xClx 钙钛矿太阳能电池的协同效应
- DOI:
10.1002/solr.201800290 - 发表时间:
2019 - 期刊:
- 影响因子:7.9
- 作者:
Bin-Bin Yu;Leiming Xu;Min Liao;Yinghui Wu;Fangzhou Liu;Zhenfei Zhang;Jie Ding;Wei Chen;Bao Tu;Yi Lin;Yudong Zhu;Xusheng Zhang;Weitang Yao;Aleks;ra B. Djurišić;Jin-Song Hu;Zhubing He - 通讯作者:
Zhubing He
Yinghui Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yinghui Wu', 18)}}的其他基金
Elements: Crowdsourced Materials Data Engine for Unpublished XRD Results
Elements:用于未发布 XRD 结果的众包材料数据引擎
- 批准号:
2104007 - 财政年份:2021
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 32.17万 - 项目类别:
Standard Grant