Collaborative Research: Data Driven Discovery of Singlet Fission Materials

合作研究:数据驱动的单线态裂变材料的发现

基本信息

  • 批准号:
    2022254
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-15 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. This project leverages advances in quantum-mechanics-based materials simulations, data science, and artificial intelligence to discover new solar cell materials. A fraction of excess energy of light in the form of high-energy photons absorbed by solar cell materials can be converted to heat rather than to electric current. This results in a loss of energy conversion efficiency. Many crystals are made of atoms that self-arrange in a regular spatially periodic pattern. Crystals can be made where organic molecules can form the fundamental unit instead of atoms. These molecular crystals may undergo a process known as singlet fission, which enables the conversion of that excess light energy into current carrying charges rather than heat. Singlet-fission-based solar cells are not yet a commercial technology due to dearth of suitable materials that exhibit this process. Over a million molecular crystal structures are known, but it is unknown for which ones singlet fission can occur. Experiments and even advanced quantum mechanical simulations are too costly and time consuming to test many known or predicted new molecular crystals. To overcome this barrier, the interdisciplinary team of experts in computational materials science and statistics will harness methods of data science and artificial intelligence. The team will investigate the use of machine learning methods to accelerate the process of materials discovery by rapidly identifying potentially promising candidate molecular crystals. The team will generate data from quantum-mechanics-based simulations to construct and iteratively improve machine-learned models. This research is expected to lead to the discovery of new materials that exhibit singlet fission, which would advance solar cell technology and could reduce the cost of solar cells. The research will lead to methodological developments that would enable materials discovery for other applications. This project also supports training in advanced high-performance computing at the exascale, and community building at the intersection of materials science and data science through organizing workshops and conferences. An outreach activity will engage educators and K-12 students to raise awareness of careers and research opportunities in materials engineering and data science. TECHNICAL SUMMARYThe Division of Materials Research and the Division of Mathematical Sciences contribute funds to this award. singlet fission is the conversion of one photogenerated singlet exciton into two triplet excitons. There has been much interest in singlet fission because of its potential to significantly increase the efficiency of organic solar cells by harvesting two charge carriers from one photon. However, few materials are presently known to exhibit intermolecular singlet fission with high efficiency, hindering the realization of solid-state singlet-fission-based solar cells. The chemical compound space of possible chromophores is infinitely vast and largely unexplored. To enable computational discovery of materials that exhibit singlet fission, the interdisciplinary team will develop a multi-fidelity screening approach, integrating quantum-mechanics-based simulations at different levels of fidelity with machine learning and database mining. Machine learning algorithms will be used to learn from data generated by simulations and to steer simulations for further data acquisition. The machine learning models will dynamically adapt as more data is acquired. This will be implemented in a fully automated iterative workflow, designed to run on exascale high performance computers. This research will advance the discovery of new intermolecular singlet fission chromophores, which will catalyze the realization of "third generation" solid-state singlet-fission-based organic solar cells. Structure-property correlations revealed by machine learning will advance the fundamental understanding of singlet fission by deriving chemical insights and design rules for chromophores and crystal forms with enhanced singlet-fission efficiency. In addition to singlet-fission chromophores, materials may be discovered with desirable properties for other organic electronic device applications. In addition, this project will lead to new methodology needed to tackle the data-science challenges posed by searching for singlet fission materials. This project will lead to statistical developments in optimal sampling strategies for high-dimensional problems involving many data sources and in adaptive models that dynamically evolve as more data is acquired. The developed approach may be extended to other problems, where properties of interest arise from complex phenomena, for which data acquisition is costly or time consuming, and predictive descriptors are unknown. This project also supports training in advanced high-performance computing at the exascale, and community building at the intersection of materials science and data science through organizing workshops and conferences. An outreach activity will engage educators and K-12 students to raise awareness of careers and research opportunities in materials engineering and data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结材料研究部和数学科学部为该奖项提供资金。该项目利用基于量子力学的材料模拟,数据科学和人工智能的进步来发现新的太阳能电池材料。太阳能电池材料吸收的一小部分以高能光子形式存在的多余光能可以转化为热量而不是电流。这导致能量转换效率的损失。许多晶体是由原子组成的,这些原子以规则的空间周期性模式自我排列。可以制造晶体,其中有机分子可以形成基本单元而不是原子。这些分子晶体可能会经历一个被称为单线态裂变的过程,这使得多余的光能转化为携带电荷的电流,而不是热量。由于缺乏合适的材料,基于单线态裂变的太阳能电池还没有商业化。已知的分子晶体结构超过一百万种,但尚不清楚哪种可以发生单重态裂变。实验,甚至先进的量子力学模拟都过于昂贵和耗时,无法测试许多已知或预测的新分子晶体。为了克服这一障碍,计算材料科学和统计学的跨学科专家团队将利用数据科学和人工智能的方法。该团队将研究使用机器学习方法,通过快速识别潜在有前途的候选分子晶体来加速材料发现的过程。该团队将从基于量子力学的模拟中生成数据,以构建和迭代改进机器学习模型。这项研究有望发现具有单线态裂变的新材料,这将推动太阳能电池技术的发展,并降低太阳能电池的成本。 这项研究将导致方法的发展,使材料发现的其他应用。 该项目还通过组织研讨会和会议,支持艾级高级高性能计算的培训,以及材料科学和数据科学交叉点的社区建设。一项推广活动将吸引教育工作者和K-12学生,以提高对材料工程和数据科学的职业和研究机会的认识。材料研究部和数学科学部为该奖项提供资金。 单线态裂变是一个光生单线态激子转化为两个三线态激子。单重态裂变由于其通过从一个光子中捕获两个电荷载流子而显著提高有机太阳能电池效率的潜力而引起了人们的极大兴趣。然而,目前已知很少有材料表现出高效率的分子间单线态裂变,这阻碍了基于固态单线态裂变的太阳能电池的实现。可能的发色团的化合物空间无限广阔,而且很大程度上尚未探索。为了实现对表现出单线态裂变的材料的计算发现,跨学科团队将开发一种多保真度筛选方法,将不同保真度水平的基于量子力学的模拟与机器学习和数据库挖掘相结合。机器学习算法将用于从模拟生成的数据中学习,并引导模拟以进一步获取数据。机器学习模型将随着获取更多数据而动态适应。这将在一个完全自动化的迭代工作流程中实施,旨在在exascale高性能计算机上运行。这项研究将推进新的分子间单重态裂变发色团的发现,这将催化实现“第三代”基于单重态裂变的固态有机太阳能电池。机器学习揭示的结构-性质相关性将通过获得具有增强的单线态裂变效率的发色团和晶体形式的化学见解和设计规则来推进对单线态裂变的基本理解。除了单线态裂变发色团之外,还可以发现具有用于其他有机电子器件应用的期望性质的材料。此外,该项目还将带来新的方法,以应对寻找单线态裂变材料所带来的数据科学挑战。这个项目将导致统计发展的最佳抽样策略的高维问题,涉及许多数据源和自适应模型,动态演变为更多的数据被收购。所开发的方法可以扩展到其他问题,其中感兴趣的属性来自复杂的现象,数据采集是昂贵的或耗时的,和预测的描述符是未知的。该项目还通过组织研讨会和会议,支持艾级高级高性能计算的培训,以及材料科学和数据科学交叉点的社区建设。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Reich其他文献

In silico dentistry(Three-dimensional simulation of orthodontic surgery using a multimodal image fusion technique)
计算机牙科(使用多模态图像融合技术进行正畸手术的三维模拟)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林一夫;Brian Reich;佐藤陽美;溝口到;Kazuo Hayashi;Itaru Mizoguchi
  • 通讯作者:
    Itaru Mizoguchi
顎運動解析における新しい統計的予測モデルの開発
开发用于下颌运动分析的新统计预测模型
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林一夫;Brian Reich;佐藤陽美;溝口到
  • 通讯作者:
    溝口到
In silico dentistry(Mandibular helical axis during opening and closing movement)
计算机牙科(打开和关闭运动期间的下颌螺旋轴)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    林一夫;Brian Reich;佐藤陽美;溝口到;Kazuo Hayashi
  • 通讯作者:
    Kazuo Hayashi
Respiratory and allergic outcomes among farmworkers exposed to pesticides in Costa Rica
哥斯达黎加接触农药的农场工人的呼吸系统和过敏结果
  • DOI:
    10.1016/j.scitotenv.2024.176776
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    María G. Rodríguez-Zamora;Samuel Fuhrimann;Mirko S. Winkler;María José Rosa;Brian Reich;Christian Lindh;Ana M. Mora
  • 通讯作者:
    Ana M. Mora

Brian Reich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Reich', 18)}}的其他基金

Projecting Flood Frequency Curves Under a Changing Climate Using Spatial Extreme Value Analysis
使用空间极值分析预测气候变化下的洪水频率曲线
  • 批准号:
    2152887
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
EAGER: MATDAT18 Type-1: Collaborative Research: Data Driven Discovery of Singlet Fission Materials
EAGER:MATDAT18 Type-1:协作研究:数据驱动的单线态裂变材料发现
  • 批准号:
    1844492
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
MATDAT18: Materials and Data Science Hackathon
MATDAT18:材料和数据科学黑客马拉松
  • 批准号:
    1748198
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: NRT-DESE: Interdisciplinary Research Traineeships in Data-Enabled Science and Engineering of Atomic Structure
合作研究:NRT-DESE:数据支持的原子结构科学与工程跨学科研究实习
  • 批准号:
    1633587
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CSUMS: NC State University Computation for Undergraduates in Statistics Program (NCSU CUSP)
CSUMS:北卡罗来纳州立大学统计本科生计算课程 (NCSU CUSP)
  • 批准号:
    0703392
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了