Bilevel Optimization with Learning
带学习的双层优化
基本信息
- 批准号:1634835
- 负责人:
- 金额:$ 22.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bilevel optimization involves mathematical models that describe hierarchical decision-making processes between multiple, usually two, decision-makers, referred to as a leader and a follower. A typical bilevel mathematical program assumes that one of the decision-makers, namely, the leader, knows the parameters of the follower's problem. Yet, there are various applications where the leader has incomplete information about the problem faced by the follower. In particular, this research is focused on practical settings, where the leader faces a classical exploitation vs. exploration trade-off: the leader and the follower interact during multiple time periods and the leader has an opportunity to update her knowledge of the follower's problem, and to incorporate this information into the decision-making process. Bilevel optimization has been a popular modeling and solution tool applied in different areas such as law enforcement, economics, transportation, health care and energy. However, standard bilevel optimization does not address this exploration vs. exploitation trade-off arising in many important applications. Therefore, the results of this work will provide improved methods for decision-makers. This project will also have educational impacts for graduate and undergraduate students through courses and direct participation in the research; participation of students from the underrepresented groups will be encouraged, including undergraduate via the REU supplement.The research will result in a new set of models and solution methods for sequential decision-making problems with uncertainty and learning in bilevel settings by combining bilevel, online and robust optimization techniques. The interface between these methods is a fairly unexplored topic. In addition, a new class of benchmarks will be developed based on the notion of a semi-oracle for validating the effectiveness of the different policies. Finally, the decision-making policies and benchmarks will require development of sophisticated algorithms. Thus, the results of this research will also enhance the overall ability to solve hard classes of bilevel and sequential optimization problems, including those under uncertainty.
双层优化涉及描述多个(通常是两个)决策者(称为领导者和追随者)之间的分层决策过程的数学模型。一个典型的二层数学规划假设决策者之一,即领导者,知道跟随者问题的参数。然而,在许多应用中,领导者对跟随者所面临的问题的信息不完全。 特别是,这项研究的重点是实际的设置,领导者面临着一个经典的开发与探索权衡:领导者和追随者在多个时间段的互动和领导者有机会更新她的知识追随者的问题,并将这些信息纳入决策过程。双层优化已经成为一种流行的建模和求解工具,应用于不同的领域,如执法,经济,交通,医疗保健和能源。然而,标准的双层优化并没有解决在许多重要应用中出现的这种探索与开发的权衡。因此,这项工作的结果将为决策者提供改进的方法。该项目还将通过课程和直接参与研究,对研究生和本科生产生教育影响;将鼓励代表性不足的群体的学生参与,包括通过REU补充的本科生。该研究将通过结合双层,在线和鲁棒优化技术。这些方法之间的接口是一个相当未开发的主题。此外,将根据半预言的概念开发一类新的基准,以验证不同政策的有效性。最后,决策政策和基准将需要开发复杂的算法。因此,这项研究的结果也将提高整体能力,解决困难的类的双层和顺序优化问题,包括那些不确定性。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On bilevel minimum and bottleneck spanning tree problems
关于双层最小生成树和瓶颈生成树问题
- DOI:10.1002/net.21881
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Shi, Xueyu;Zeng, Bo;Prokopyev, Oleg A.
- 通讯作者:Prokopyev, Oleg A.
On exact solution approaches for bilevel quadratic 0–1 knapsack problem
双层二次0-1背包问题的精确求解方法
- DOI:10.1007/s10479-018-2970-4
- 发表时间:2018
- 期刊:
- 影响因子:4.8
- 作者:Zenarosa, Gabriel Lopez;Prokopyev, Oleg A.;Pasiliao, Eduardo L.
- 通讯作者:Pasiliao, Eduardo L.
On Bilevel Optimization with Inexact Follower
不精确跟随者的双层优化
- DOI:10.1287/deca.2019.0392
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Zare, M. Hosein;Prokopyev, Oleg A.;Sauré, Denis
- 通讯作者:Sauré, Denis
Sequential Interdiction with Incomplete Information and Learning
- DOI:10.1287/opre.2018.1773
- 发表时间:2019-01-01
- 期刊:
- 影响因子:2.7
- 作者:Borrero, Juan S.;Prokopyev, Oleg A.;Saure, Denis
- 通讯作者:Saure, Denis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleg Prokopyev其他文献
Oleg Prokopyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleg Prokopyev', 18)}}的其他基金
Integrating Proactive and Reactive Operating Room Management
集成主动式和被动式手术室管理
- 批准号:
1333758 - 财政年份:2013
- 资助金额:
$ 22.76万 - 项目类别:
Standard Grant
Collaborative Research: International Experience for Students: U.S.-Ukraine Collaboration on Discrete and Nondifferentiable Optimization
合作研究:学生的国际经验:美国-乌克兰在离散和不可微优化方面的合作
- 批准号:
0853997 - 财政年份:2009
- 资助金额:
$ 22.76万 - 项目类别:
Standard Grant
Novel Optimization-Based Biclustering Algorithms for Biomedical Data Analysis
用于生物医学数据分析的基于优化的新型双聚类算法
- 批准号:
0825993 - 财政年份:2008
- 资助金额:
$ 22.76万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Continuing Grant
AF: Small: Memory Bounded Optimization and Learning
AF:小:内存限制优化和学习
- 批准号:
2341890 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Continuing Grant
EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
- 批准号:
2412345 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Standard Grant
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
- 批准号:
2338226 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Continuing Grant
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 22.76万 - 项目类别:
Continuing Grant