Novel Optimization-Based Biclustering Algorithms for Biomedical Data Analysis

用于生物医学数据分析的基于优化的新型双聚类算法

基本信息

  • 批准号:
    0825993
  • 负责人:
  • 金额:
    $ 21.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

This award provides funding for the development of novel optimization-based methods for handling the problem of biclustering in biomedical data analysis. Biclustering consists of simultaneously partitioning the set of data samples and the set of their attributes (features) into subsets (clusters). Biclustering has great significance for data analysis in a variety of biomedical applications. Performing it with high reliability, we are able to not only diagnose conditions represented by sample clusters, but also to identify the key features (e.g., genes) responsible for them, or serving as their markers. The criteria used to relate clusters of samples and clusters of features may differ, relying on various patterns of interest among elements of a bicluster. The search for these patterns can be represented as optimization tasks, the solutions of which form the biclusters of data. We propose a family of new mathematical programming models to tackle the biclustering problem in biomedical data analysis. Advanced solution approaches will be developed for solving the proposed optimization models. Computational experiments involving real data analysis problems will be performed to validate the implemented algorithms against existing methodologies.If successful, the results of this research project are expected to have a high impact in the area at the intersection of optimization, data mining and biomedicine. It will facilitate the expansion of advanced biclustering analysis in related health care and biomedical applications, potentially improving prediction and diagnosis procedures, as well as the understanding of the mechanisms responsible for many diseases. The proposed work is also expected to enhance the existing computational tools and methodologies for solving hard optimization problems.
该奖项为生物医学数据分析中处理双聚类问题的新型优化方法的开发提供资金。双聚类包括将数据样本集及其属性(特征)集同时划分为子集(聚类)。双聚类在各种生物医学应用中的数据分析具有重要意义。以高可靠性执行它,我们不仅能够诊断样本集群所代表的条件,而且还能够识别负责它们的关键特征(例如,基因),或作为它们的标记。用于关联样本簇和特征簇的标准可能不同,这取决于双聚类元素之间的各种兴趣模式。对这些模式的搜索可以表示为优化任务,其解决方案形成数据的双聚类。我们提出了一组新的数学规划模型来解决生物医学数据分析中的双聚类问题。将开发先进的解决方法来解决所提出的优化模型。将进行涉及实际数据分析问题的计算实验,以验证针对现有方法的实现算法。如果成功,该研究项目的结果预计将在优化、数据挖掘和生物医学的交叉领域产生很大的影响。它将促进在相关保健和生物医学应用中扩大先进的双聚类分析,有可能改进预测和诊断程序,以及对导致许多疾病的机制的理解。提出的工作也有望提高现有的计算工具和方法,以解决困难的优化问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleg Prokopyev其他文献

Oleg Prokopyev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleg Prokopyev', 18)}}的其他基金

Bilevel Optimization with Learning
带学习的双层优化
  • 批准号:
    1634835
  • 财政年份:
    2016
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Integrating Proactive and Reactive Operating Room Management
集成主动式和被动式手术室管理
  • 批准号:
    1333758
  • 财政年份:
    2013
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
Collaborative Research: International Experience for Students: U.S.-Ukraine Collaboration on Discrete and Nondifferentiable Optimization
合作研究:学生的国际经验:美国-乌克兰在离散和不可微优化方面的合作
  • 批准号:
    0853997
  • 财政年份:
    2009
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: Optimization of a Novel Compliant Mechanisms-Based Laparoscope Cleaning Device
SBIR 第一阶段:基于新型顺应机制的腹腔镜清洁装置的优化
  • 批准号:
    2213695
  • 财政年份:
    2023
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
STTR Phase I: Investigation and Optimization of a Novel, Pheromone-based Tool for Measuring Honey bee Colony Pest and Disease Resistance
STTR 第一阶段:基于信息素的新型工具的研究和优化,用于测量蜂群病虫害抗性
  • 批准号:
    2111970
  • 财政年份:
    2022
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Standard Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
  • 批准号:
    21H03452
  • 财政年份:
    2021
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Form Optimization of Reinforcing Materials for Concrete Based on the Novel Stress Measurement Techniques
基于新型应力测量技术的混凝土增强材料形式优化
  • 批准号:
    20H02302
  • 财政年份:
    2020
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimization of Novel Molecular Target-based Drugs for Arsenical Skin Injury
砷皮肤损伤新型分子靶点药物的优化
  • 批准号:
    10700044
  • 财政年份:
    2020
  • 资助金额:
    $ 21.28万
  • 项目类别:
Optimization of Novel Molecular Target-based Drugs for Arsenical Skin Injury
砷皮肤损伤新型分子靶点药物的优化
  • 批准号:
    10023318
  • 财政年份:
    2020
  • 资助金额:
    $ 21.28万
  • 项目类别:
Optimization of Novel Molecular Target-based Drugs for Arsenical Skin Injury
砷皮肤损伤新型分子靶点药物的优化
  • 批准号:
    10259711
  • 财政年份:
    2020
  • 资助金额:
    $ 21.28万
  • 项目类别:
Optimization of Novel Molecular Target-based Drugs for Arsenical Skin Injury
砷皮肤损伤新型分子靶点药物的优化
  • 批准号:
    10886403
  • 财政年份:
    2020
  • 资助金额:
    $ 21.28万
  • 项目类别:
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 21.28万
  • 项目类别:
    Continuing Grant
Novel On-line PET Based Intra-Beam Range Verification and Delivery Optimization for Improved Particle Radiation Therapy
基于新型在线 PET 的束内范围验证和传输优化,以改进粒子放射治疗
  • 批准号:
    10355422
  • 财政年份:
    2018
  • 资助金额:
    $ 21.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了