Data-driven Modeling and Optimization for Energy-Smart Manufacturing

能源智能制造的数据驱动建模和优化

基本信息

项目摘要

The concept of energy-smart manufacturing is to deliver customized products while simultaneously optimizing energy consumption, product performance (e.g., product functionality, quality and process variability) and equipment maintenance cost. Many previous attempts with similar goals focus on one objective at a time. In reality, because energy consumption, product performance, and equipment maintenance are correlated, decisions related to one aspect will often affect other aspects. This award will support fundamental research to discover the interactions among energy efficiency, product performance, and equipment maintenance. The knowledge thus gained will be used to optimize the manufacturing processes and maintenance operations for high energy efficiency and low cost. The methodology is intended to be widely applicable to many different types of manufacturing operations. The research results will be broadly disseminated to equip the current and future manufacturing engineers with the new methodologies through joint workshops with an industrial collaborator, technical training sessions, and case studies. Summer outreach workshops will be organized to engage high school students from underrepresented groups. The objective of this research is to customize data-driven modeling and optimization methodology to achieve high energy efficiency, excellent product performance, and low maintenance cost in manufacturing. A data-driven decision-making framework will be developed with the following intellectual merits: (1) dynamic models will be developed to quantify the product performance by considering equipment degradation effects and the change of product types; (2) a degradation index will be constructed from multivariate degradation measurements and a cumulative damage model will be used to predict equipment degradation; and (3) energy efficiency and maintenance cost will be optimized through customization of optimization algorithms at both the manufacturing system and the enterprise levels. These methodologies will be validated in a plasma spray coating process in the aero-engine manufacturing industry, and it will be designed to be broadly applicable to other high-energy-consumption manufacturing operations.
能源智能制造的概念是提供定制的产品,同时优化能源消耗、产品性能(例如,产品功能、质量和工艺可变性)和设备维护成本。以前有许多类似目标的尝试一次只关注一个目标。在现实中,由于能源消耗、产品性能和设备维护是相互关联的,因此与一个方面相关的决策往往会影响其他方面。该奖项将支持基础研究,以发现能源效率,产品性能和设备维护之间的相互作用。由此获得的知识将用于优化制造工艺和维护操作,以实现高能效和低成本。该方法旨在广泛适用于许多不同类型的制造业务。研究成果将广泛传播,通过与工业合作者的联合研讨会,技术培训课程和案例研究,为当前和未来的制造工程师提供新的方法。将组织夏季外联讲习班,让代表性不足群体的高中生参与。 本研究的目的是定制数据驱动的建模和优化方法,以实现高能源效率,卓越的产品性能和低维护成本的制造。将建立一个数据驱动的决策框架,该框架具有以下智力优势:(1)通过考虑设备退化效应和产品类型的变化,建立动态模型来量化产品性能;(2)将从多变量退化测量构建退化指数,并使用累积损伤模型来预测设备退化;以及(3)将通过在制造系统和企业级别上定制优化算法来优化能量效率和维护成本。这些方法将在航空发动机制造业的等离子喷涂工艺中得到验证,并将被设计为广泛适用于其他高能耗制造业务。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clustering-based Data Filtering for Manufacturing Big Data System
基于聚类的制造大数据系统数据过滤
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Li, Y.;Deng, X.;Jin, R.;Ba, S.;Myers, W.
  • 通讯作者:
    Myers, W.
Semiparametric Models for Accelerated Destructive Degradation Test Data Analysis
用于加速破坏性降解测试数据分析的半参数模型
  • DOI:
    10.1080/00401706.2017.1321584
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xie, Yimeng;King, Caleb B.;Hong, Yili;Yang, Qingyu
  • 通讯作者:
    Yang, Qingyu
Big data and reliability applications: The complexity dimension
  • DOI:
    10.1080/00224065.2018.1438007
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Hong, Yili;Zhang, Man;Meeker, William Q.
  • 通讯作者:
    Meeker, William Q.
Profile monitoring based quality control method for fused deposition modeling process
  • DOI:
    10.1007/s10845-018-1424-9
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    He, Ketai;Zhang, Qian;Hong, Yili
  • 通讯作者:
    Hong, Yili
Family learning: A process modeling method for cyber-additive manufacturing network
  • DOI:
    10.1080/24725854.2020.1851824
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Lening Wang;Xiaoyu Chen;D. Henkel;R. Jin
  • 通讯作者:
    Lening Wang;Xiaoyu Chen;D. Henkel;R. Jin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ran Jin其他文献

42268 Real-World Utilization of Adalimumab Biosimilar (ABP 501) in Patients with Psoriasis in Europe
  • DOI:
    10.1016/j.jaad.2023.07.866
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ran Jin;Eleanor Wrest;James Haughton;James Piercy;Rachel Meadows;Waldemar Radziszewski
  • 通讯作者:
    Waldemar Radziszewski
A lightweight network for traffic sign detection via multiple scale context awareness and semantic information guidance
  • DOI:
    10.1038/s41598-025-94610-0
  • 发表时间:
    2025-03-24
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Chenjie Du;Siyu Su;Chenwei Lin;Yingbiao Yao;Ran Jin;Xinhua Hong
  • 通讯作者:
    Xinhua Hong
EVALUATING THE IMPACT OF LDL-C REDUCTION ON RECURRENT MI AND STROKE RELATED HOSPITALIZATIONS USING CAUSAL MACHINE LEARNING IN A REAL WORLD DATA
在真实世界数据中使用因果机器学习评估低密度脂蛋白胆固醇降低对复发性心肌梗死和与中风相关住院的影响
  • DOI:
    10.1016/s0735-1097(25)01051-4
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Fang He;Ran Jin;Yingting Liu;Shia Kent;Zhong Wang;Bethany Kalich;Nafeesa Dhalwani
  • 通讯作者:
    Nafeesa Dhalwani
A novel strategy to construct highly conductive and stabilized anionic channels by fluorocarbon grafted polymers
氟碳接枝聚合物构建高导电稳定阴离子通道的新策略
  • DOI:
    10.1016/j.memsci.2017.10.050
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Ran Jin;Ding Liang;Yu Dongbo;Zhang Xu;Hu Min;Wu Liang;Xu Tongwen
  • 通讯作者:
    Xu Tongwen
A Co-optimization Routing Algorithm in Wireless Sensor Network
无线传感器网络中的协同优化路由算法
  • DOI:
    10.1007/s11277-012-0791-3
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ran Jin;C. Kou;Ruijuan Liu;Yefeng Li
  • 通讯作者:
    Yefeng Li

Ran Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ran Jin', 18)}}的其他基金

Data Quality in Manufacturing Industrial Internet Integration
制造业工业互联网集成中的数据质量
  • 批准号:
    2331985
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental Design and Analysis of Quantitative-Qualitative Responses in Manufacturing and Biomedical Systems
协作研究:制造和生物医学系统中定量-定性响应的实验设计和分析
  • 批准号:
    1435996
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23K25946
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404369
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
  • 批准号:
    2404368
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23H01250
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了