Data Quality in Manufacturing Industrial Internet Integration
制造业工业互联网集成中的数据质量
基本信息
- 批准号:2331985
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project is focused on data quality evaluation and improvement for effective Artificial Intelligence (AI) deployment in manufacturing. In modern manufacturing industries, AI-guided decision-making has revolutionized production, product quality, design customization, and manufacturing sustainability. However, the lack of quantitative data quality evaluation and effective data preparation methodologies for manufacturing AI models pose a few critical challenges, including untrustworthy AI decision-making, high energy consumptions to process large but quality-poor datasets, and a lack of more effective datasets to be shared across manufacturing systems for AI model training. These challenges greatly slow down the adoption of AI technologies in manufacturing industries, thus significantly impacting the global competitiveness of US manufacturing. This research project defines and evaluates quantitative manufacturing data quality metrics, advances scientific knowledge for data quality assurance based on manufacturing features, and promotes dataset preparation for AI modeling. As a result, the research not only enables fast training and comparison of AI models due to improved manufacturing data quality, but also reduces environmental impact on data computation, communication, and storage. This research project also includes a comprehensive outreach and education program for college students and manufacturing workforce development, including panel discussion, outreach seminars to underrepresented students and practitioners, and manufacturing AI competitions. The goal of this research project is to define, evaluate, and improve data quality to enable compatible usage of datasets in Manufacturing Industrial Internet integrated by heterogenous machines, sensors, and computation devices. The project builds the data quality methodology to address the challenges based on manufacturing specific data format and modalities from different manufacturing layouts. First, the data quality is defined as inversely proportional to the variance of AI model performance. A latent neural recommender system investigates the interface between datasets and AI models to assess data quality when different AI models are used. Second, manufacturing data quality is modeled based on the unique manufacturing data features from graphs of different manufacturing layouts and data modalities. Third, after the root causes of poor data quality are identified, golden datasets are generated by ensemble active learning by contextual bandits to ensure robust manufacturing AI model performance to data source variabilities. The data quality methodology connects to the manufacturing hierarchical variable relationship, multimodal data, and layout representations with effective feature representations. Methodologies are validated by both real datasets in Semiconductor Manufacturing and a Manufacturing Industrial Internet testbed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目的重点是数据质量评估和有效人工智能(AI)部署的改进。在现代制造行业中,AI引导的决策彻底改变了生产,产品质量,设计定制和制造可持续性。但是,缺乏用于制造AI模型的定量数据质量评估和有效的数据准备方法构成了一些关键挑战,包括不信任的AI决策,高能量消耗来处理大型但优质贫困的数据集,以及缺乏在AI模型培训的制造系统中共享的更有效的数据集。这些挑战极大地降低了AI技术在制造业中的采用,从而显着影响了美国制造业的全球竞争力。 该研究项目定义和评估定量制造数据质量指标,基于制造功能的数据质量保证的科学知识,并促进数据集准备AI建模。 结果,该研究不仅可以通过改进的制造数据质量来快速培训和比较AI模型,还可以减少对数据计算,通信和存储的环境影响。该研究项目还包括一个针对大学生和制造业劳动力发展的综合外展和教育计划,包括小组讨论,向代表性不足的学生和从业人员进行推广研讨会以及制造AI竞赛。 该研究项目的目的是定义,评估和改善数据质量,以使数据集在由异源机器,传感器和计算设备集成的制造工业互联网中兼容。该项目构建了数据质量方法,以应对基于制造特定数据格式的挑战和不同制造布局的方式。首先,数据质量定义为与AI模型性能的差异成反比。潜在的神经推荐系统研究数据集和AI模型之间的接口,以评估使用不同的AI模型时的数据质量。其次,制造数据质量是根据不同制造布局和数据模式图的独特制造数据特征建模的。第三,在确定了数据质量差的根本原因之后,通过通过上下文匪徒进行集合的主动学习生成金数据集,以确保对数据源变异性的强大制造AI模型性能。数据质量方法与具有有效特征表示形式的制造层次变量关系,多模式数据和布局表示相关。方法论通过半导体制造中的真实数据集和制造业工业互联网测试床都得到了验证。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ran Jin其他文献
42268 Real-World Utilization of Adalimumab Biosimilar (ABP 501) in Patients with Psoriasis in Europe
- DOI:
10.1016/j.jaad.2023.07.866 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Ran Jin;Eleanor Wrest;James Haughton;James Piercy;Rachel Meadows;Waldemar Radziszewski - 通讯作者:
Waldemar Radziszewski
Improving Assessment in Kidney Transplantation by Multitask General Path Model
通过多任务通用路径模型改进肾移植评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Qing Lan;Xiaoyu Chen;Murong Li;John Robertson;Yong Lei;Ran Jin - 通讯作者:
Ran Jin
Role of PAI-1 in Pediatric Obesity and Nonalcoholic Fatty Liver Disease
PAI-1 在儿童肥胖和非酒精性脂肪肝中的作用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Ran Jin;J. Frediani;J. Holzberg;M. Vos - 通讯作者:
M. Vos
A Co-optimization Routing Algorithm in Wireless Sensor Network
无线传感器网络中的协同优化路由算法
- DOI:
10.1007/s11277-012-0791-3 - 发表时间:
2013 - 期刊:
- 影响因子:2.2
- 作者:
Ran Jin;C. Kou;Ruijuan Liu;Yefeng Li - 通讯作者:
Yefeng Li
A novel strategy to construct highly conductive and stabilized anionic channels by fluorocarbon grafted polymers
氟碳接枝聚合物构建高导电稳定阴离子通道的新策略
- DOI:
10.1016/j.memsci.2017.10.050 - 发表时间:
2018 - 期刊:
- 影响因子:9.5
- 作者:
Ran Jin;Ding Liang;Yu Dongbo;Zhang Xu;Hu Min;Wu Liang;Xu Tongwen - 通讯作者:
Xu Tongwen
Ran Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ran Jin', 18)}}的其他基金
Data-driven Modeling and Optimization for Energy-Smart Manufacturing
能源智能制造的数据驱动建模和优化
- 批准号:
1634867 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Experimental Design and Analysis of Quantitative-Qualitative Responses in Manufacturing and Biomedical Systems
协作研究:制造和生物医学系统中定量-定性响应的实验设计和分析
- 批准号:
1435996 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
数字化转型对制造业企业创新质量的影响:作用机制、边界条件和政策研究
- 批准号:72374050
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
数字企业赋能中国制造业企业出口产品策略优化与质量升级的机制与路径:理论基础、实证检验与政策设计
- 批准号:72303185
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
互联网空间重塑效应对制造业高质量发展影响研究:集聚-分散动态视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国区域产业政策推动制造业高质量发展的机制与路径研究
- 批准号:72203100
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
互联网空间重塑效应对制造业高质量发展影响研究:集聚-分散动态视角
- 批准号:72203018
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323083 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323084 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323082 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: