Cyber-Physical Systems Approach to the Optimal Design of Structures for Wind Hazards

风灾结构优化设计的网络物理系统方法

基本信息

  • 批准号:
    1636039
  • 负责人:
  • 金额:
    $ 51.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this research is to pioneer a cyber-physical systems (CPS) methodology for the optimal design of structures subjected to wind hazards. The CPS approach will combine wind tunnel testing at the NSF-supported Natural Hazards Engineering Research Infrastructure facility at the University of Florida with computer-augmented design to produce optimal structural designs faster and with greater confidence than purely experimental or purely computational methods. Experimental wind tunnel testing provides unparalleled accuracy in the development and evaluation of building and bridge designs under steady wind loads, gusts, and complex wind-structure interaction. At the same time, computational optimization methods enable the rapid creation and evaluation of competing designs to best meet specified objectives. Advances in the science of CPS can lead to seamless integration of physical wind tunnel testing into computer-driven design and optimization. The CPS approach can supplement or replace laborious trial-and-error design approaches, which often require extensive iterations and communication burden between the architects and structural engineers and do not exhaustively explore a wide range of design alternatives. This project will advance the capability to build stronger, lighter, and more resilient structures in the face of wind hazards. At the same time, by weighing cost-effectiveness directly in the design approach, selected designs will make more sustainable use of resources and ultimately have a better chance of being constructed. A stakeholder group will be formed to ensure that the parameters, constraints, and performance objectives relevant to wind engineering from various academic, industrial, and governmental organizations are considered and appropriately balanced in the approach. Additionally, project outreach activities will increase the scientific literacy and public awareness of wind hazards and engineering solutions while including the participation of underrepresented groups in science, engineering, technology, and mathematics (STEM) fields directly in the research.This research will advance theory, research, and practice in wind engineering by combining the reliability of experimental wind tunnel testing with efficiency of computational-based optimization techniques. The CPS methodology will be directed by a high performance computer, implementing optimization algorithms, while each candidate solution will be rapidly evaluated through experimental testing in a networked boundary layer wind tunnel. This methodology will optimize geometric (e.g., shape and porosity) and structural (e.g., stiffness and damping) properties of scaled structural models. The properties will be rapidly adjusted prior to each scaled duration wind tunnel test. A networked supercomputer will monitor feedback information from sensors, apply optimization techniques (augmented by finite element analysis), and determine a new structural configuration for the next physical test. Objectives will be user-defined (e.g., minimize weight or base shear) within constraints (e.g., meeting requirements for drift, acceleration, and occupancy). This research will advance the fields of wind and structural engineering by: (1) combining the strengths of high-fidelity experimental testing and numerically-driven optimization, (2) advancing the development and application of meta-heuristic optimization algorithms in a practical engineering setting, (3) discovering new design and detailing features to achieve cost-effective civil infrastructure under wind hazards, and (4) creating a system for satisfying performance requirements, e.g., for performance-based design.
这项研究的目标是开创一种计算机物理系统(CPS)方法,用于风灾结构的优化设计。CPS方法将把美国国家科学基金会支持的佛罗里达大学自然灾害工程研究基础设施的风洞测试与计算机增强设计相结合,以比纯粹的实验或纯粹的计算方法更快、更有信心地产生最佳结构设计。在稳定的风荷载、阵风和复杂的风-结构相互作用下,实验风洞测试为建筑和桥梁设计的开发和评估提供了无与伦比的准确性。同时,计算优化方法能够快速创建和评估竞争设计,以最大限度地满足特定目标。CPS科学的进步可以将物理风洞测试无缝地整合到计算机驱动的设计和优化中。CPS方法可以补充或取代费力的反复试验设计方法,后者通常需要建筑师和结构工程师之间广泛的迭代和沟通负担,并且不会详尽地探索广泛的设计替代方案。该项目将提高建造更坚固、更轻、更具弹性的结构以应对风灾的能力。同时,通过在设计方法中直接权衡成本效益,选定的设计将更可持续地利用资源,最终有更好的机会建造。将成立一个利益相关者小组,以确保在该方法中考虑并适当平衡来自各种学术、工业和政府组织的与风能工程相关的参数、约束和性能目标。此外,项目推广活动将提高科学素养和公众对风灾和工程解决方案的认识,同时包括科学、工程、技术和数学(STEM)领域中未被充分代表的群体直接参与研究。这项研究将通过将实验风洞测试的可靠性与基于计算的优化技术的效率相结合,推动风工程的理论、研究和实践。CPS方法将由高性能计算机指导,实施优化算法,而每个候选方案将通过网络边界层风洞中的实验测试进行快速评估。该方法将优化缩放结构模型的几何(例如,形状和孔隙度)和结构(例如,刚度和阻尼)属性。在每次定标持续时间的风洞试验之前,将快速调整这些特性。联网的超级计算机将监控来自传感器的反馈信息,应用优化技术(通过有限元分析得到增强),并为下一次物理测试确定新的结构配置。目标将在约束(例如,满足漂移、加速和占用要求)内由用户定义(例如,最大限度地减少重量或底部剪切)。这项研究将通过以下方式推动风和结构工程领域的发展:(1)结合高保真实验测试和数值驱动优化的优点,(2)促进元启发式优化算法在实际工程环境中的开发和应用,(3)发现新的设计和详细的功能,以实现在风灾下具有成本效益的民用基础设施,以及(4)创建满足性能要求的系统,例如,基于性能的设计。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cyber-physical systems approach to optimization in wind engineering: parapet wall design
风工程优化的网络物理系统方法:女儿墙设计
Optimal design of structures using cyber-physical wind tunnel experiments with mechatronic models
使用机电模型的网络物理风洞实验进行结构优化设计
  • DOI:
    10.1016/j.jweia.2017.11.013
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Whiteman, Michael L.;Phillips, Brian M.;Fernández-Cabán, Pedro L.;Masters, Forrest J.;Bridge, Jennifer A.;Davis, Justin R.
  • 通讯作者:
    Davis, Justin R.
Predicting Roof Pressures on a Low-Rise Structure From Freestream Turbulence Using Artificial Neural Networks
  • DOI:
    10.3389/fbuil.2018.00068
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Pedro L. Fernández-Cabán;F. Masters;B. Phillips
  • 通讯作者:
    Pedro L. Fernández-Cabán;F. Masters;B. Phillips
Optimal design in wind engineering using cyber-physical systems and non-stochastic search algorithms
使用信息物理系统和非随机搜索算法进行风工程优化设计
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Whiteman, M.L.;Fernández-Cabán, P.L.;Phillips, B.M.;Masters, F.J.;Bridge, J.A.;and Davis, J.R.
  • 通讯作者:
    and Davis, J.R.
Multi-Objective Optimal Design of a Building Envelope and Structural System Using Cyber-Physical Modeling in a Wind Tunnel
  • DOI:
    10.3389/fbuil.2018.00013
  • 发表时间:
    2018-03-22
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Whiteman, Michael L.;Fernandez-Caban, Pedro L.;Davis, Justin R.
  • 通讯作者:
    Davis, Justin R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Phillips其他文献

The U.S. Equity-First Vaccination Initiative: Early Insights
美国公平优先疫苗接种计划:早期见解
  • DOI:
    10.7249/wra1627-1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    39
  • 作者:
    L. Faherty;Jeanne S. Ringel;Malcolm V Williams;A. Kranz;Lilian G. Perez;Lucy B. Schulson;Allyson D. Gittens;Brian Phillips;Lawrence Baker;P. Gandhi;Khadesia Howell;Rebecca E. Wolfe;Tiwaladeoluwa B Adekunle
  • 通讯作者:
    Tiwaladeoluwa B Adekunle
Workers’ relationships to their union: The effects of transfer status and race at a U.S. automobile plant
  • DOI:
    10.1016/j.soscij.2009.12.001
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Brian Phillips;Phyllis Curtiss;George Lundskow
  • 通讯作者:
    George Lundskow
“Covering provider”: an effort to streamline clinical communication chaos
“覆盖提供者”:努力简化临床沟通混乱
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Mugdha Joshi;Arjun Gokhale;Stephen Ma;Anna Pendrey;Lauren Wozniak;Anoosha Moturu;Nicholas U Schwartz;Austin Wilson;Kelly Darmawan;Brian Phillips;Stav Cullum;Christopher Sharp;Gretchen Brown;Lisa Shieh;Clifford Schmiesing
  • 通讯作者:
    Clifford Schmiesing
Insider Threat Detection in PRODIGAL
PRODIGAL 中的内部威胁检测
Spillover effects of specialized high schools
专门化高中的溢出效应
  • DOI:
    10.1016/j.jpubeco.2024.105170
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Christine Mulhern;Shelby McNeill;Fatih Unlu;Brian Phillips;Julie A. Edmunds;Eric Grebing
  • 通讯作者:
    Eric Grebing

Brian Phillips的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Phillips', 18)}}的其他基金

MRI: Development of a Shared-Use Experimental Platform to Study Wind, Hydrodynamic, and Biochemical Conditions in the Littoral Zone During Extreme Coastal Storms
MRI:开发共享实验平台来研究极端沿海风暴期间沿海地区的风、水动力和生化条件
  • 批准号:
    2215297
  • 财政年份:
    2022
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Aerodynamic Shape Optimization of Tall Buildings using Automated Cyber-Physical Testing
合作研究:利用自动化网络物理测试对高层建筑进行空气动力学形状优化
  • 批准号:
    2028762
  • 财政年份:
    2021
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
US-Japan Planning Visit for Complementary Experimental Programs Toward Validated Advanced Damping Systems
美日计划访问互补实验项目以验证先进阻尼系统
  • 批准号:
    1444160
  • 财政年份:
    2015
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
How phosphate is incorporated into carbonate minerals and its dependence on crystal growth conditions
磷酸盐如何融入碳酸盐矿物及其对晶体生长条件的依赖性
  • 批准号:
    0819838
  • 财政年份:
    2008
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
  • 批准号:
    0714331
  • 财政年份:
    2007
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Fellowship Award
A F-19 NMR Probe of Mineral Surface Reactivity
矿物表面反应性的 F-19 NMR 探针
  • 批准号:
    0310200
  • 财政年份:
    2003
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Continuing Grant
Conference: CPS: NSF Student Travel Grant for 2024 Cyber-Physical Systems and Internet-of-Things Week (CPS-IoT Week)
会议:CPS:2024 年网络物理系统和物联网周(CPS-IoT Week)的 NSF 学生旅行补助金
  • 批准号:
    2422416
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
Career: Learning-Enabled Medical Cyber-Physical Systems
职业:支持学习的医疗网络物理系统
  • 批准号:
    2339637
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Continuing Grant
CRII: CNS: Supporting Resilient Perception in Autonomous Cyber-physical Systems
CRII:CNS:支持自主网络物理系统中的弹性感知
  • 批准号:
    2348349
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
SHF: Small: A Hybrid Synchronous Language for Verifiable Execution of Cyber-Physical Systems
SHF:Small:一种用于网络物理系统可验证执行的混合同步语言
  • 批准号:
    2348706
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 51.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了