BD Spokes: Spoke: NORTHEAST: Collaborative: Grand Challenges for Data-Driven Education
BD 发言人: 发言人:东北:协作:数据驱动教育的巨大挑战
基本信息
- 批准号:1636782
- 负责人:
- 金额:$ 42.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will support teachers, administrators and researchers to collaborate around online education resources and big data. It will increase the capacity of participants in Educational Big Data in the Northeast to analyze data from schools, students and administrators and to improve teaching and learning. However, as more refined data comes from online instructional systems and the use of data mining techniques, participants will learn to search for patterns and associations and to draw conclusions about student knowledge, performance and behavior. This research addresses several grand challenges in education: 1) Predict future student events, e.g., college attendance, college major, from existing large-scale longitudinal educational data sets involving the same thousands of students. 2) Help teachers to make sense of dense online data to influence their teaching, e.g., what should they say or do in response to student activity. 3) Provide personal instruction to each student based on using big data that represents student skills and behavior and infers students' cognitive, motivational, and metacognitive factors in learning. The project will improve the capacity in data-driven education by sharing educational databases, managing yearly data competitions, and conducting educational data science workshops and hackathons. Measurable results include studying gigabytes of data to: create actionable recommendations for classroom teachers; make effective and successful predictions about students; develop new AI methods for education; and create new data science tool sets. Key outcomes include introducing many researchers to educational big data, learning analytics and models of teaching interventions. The team intends to improve classroom learning and leverage the unique types of data available from digital education to better understand students, groups and the settings in which they learn.Computers have been in classrooms for decades and yet educators have not identified the most effective ways of using them. Despite advances in evaluation methods to measure human learning, most researchers still use measures available 50 years ago. This project will leverage and extend state-of-the-art big data bases and technologies to measure online learning, especially features of student engagement and learning associated with improved student outcome. This project has the potential to reach millions of students (while learning), hundreds of researchers while measuring human learning (from education, cognitive science, learning sciences, psychology, and computer science) and a dozen other organizations (publishers, testing organizations, non-profit organizations, teachers, parents, and stakeholders). The team brings together a unique blend of researchers from data science (Baker, Heffernan); adaptive education technology and computer science (Woolf, Arroyo); and learning sciences (Arroyo, Heffernan). It includes women and minorities (Woolf, Arroyo), people who helped develop the largest educational database in the world (Baker), developers of data science teaching materials (Arroyo, Baker), and others who have developed online tutoring systems that achieve significant student success in learning (e.g., Heffernan, Arroyo, Woolf).
该项目将支持教师、管理人员和研究人员围绕在线教育资源和大数据进行协作。它将提高东北部教育大数据参与者分析学校,学生和管理人员数据的能力,并改善教学和学习。然而,随着更精确的数据来自在线教学系统和数据挖掘技术的使用,参与者将学会搜索模式和关联,并得出有关学生知识,表现和行为的结论。这项研究解决了教育中的几个重大挑战:1)预测未来的学生事件,例如,大学出勤率,大学专业,从现有的大规模纵向教育数据集,涉及同样的数千名学生。2)帮助教师理解密集的在线数据,以影响他们的教学,例如,他们应该说什么或做什么来回应学生的活动。3)利用代表学生技能和行为的大数据,推断学生在学习中的认知、动机和元认知因素,为每个学生提供个性化指导。该项目将通过共享教育数据库、管理年度数据竞赛以及举办教育数据科学研讨会和黑客马拉松来提高数据驱动教育的能力。可衡量的结果包括研究千兆字节的数据,以:为课堂教师创建可操作的建议;对学生进行有效和成功的预测;开发新的人工智能教育方法;以及创建新的数据科学工具集。主要成果包括向许多研究人员介绍教育大数据,学习分析和教学干预模型。该团队打算改善课堂学习,并利用数字教育提供的独特类型的数据,以更好地了解学生、团体和他们学习的环境。计算机已经在教室里使用了几十年,但教育工作者还没有找到最有效的使用方法。尽管衡量人类学习的评估方法取得了进步,但大多数研究人员仍然使用50年前可用的测量方法。该项目将利用和扩展最先进的大数据库和技术来衡量在线学习,特别是与提高学生成绩相关的学生参与和学习的特征。这个项目有可能接触到数百万学生(在学习过程中),数百名研究人员,同时测量人类学习(来自教育,认知科学,学习科学,心理学和计算机科学)和十几个其他组织(出版商,测试组织,非营利组织,教师,家长和利益相关者)。该团队汇集了来自数据科学(Baker,Hongnan)的研究人员;自适应教育技术和计算机科学(Woolf,Arroyo);以及学习科学(Arroyo,Hongnan)。它包括妇女和少数民族(Woolf,Arroyo),帮助开发世界上最大的教育数据库的人(Baker),数据科学教材的开发人员(Arroyo,Baker),以及其他开发在线辅导系统的人,这些系统在学习中取得了显着的学生成功(例如,Hongnan,Arroyo,Woolf).
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The automated grading of student open responses in mathematics
学生数学开放式回答的自动评分
- DOI:10.1145/3375462.3375523
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Erickson, John A.;Botelho, Anthony F.;McAteer, Steven;Varatharaj, Ashvini;Heffernan, Neil T.
- 通讯作者:Heffernan, Neil T.
Effectiveness of Crowd-Sourcing On-Demand Assistance from Teachers in Online Learning Platforms
在线学习平台中教师众包按需协助的有效性
- DOI:10.1145/3386527.3405912
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Patikorn, Thanaporn;Heffernan, Neil T.
- 通讯作者:Heffernan, Neil T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivon Arroyo其他文献
Ivon Arroyo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivon Arroyo', 18)}}的其他基金
Development and Impact Assessment of an Interactive Online System for Computing Ethics Education
计算机伦理教育交互式在线系统的开发和影响评估
- 批准号:
2337132 - 财政年份:2024
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
Developing Computational Thinking by Creating Multi-player Physically Active Math Games
通过创建多人体育数学游戏来发展计算思维
- 批准号:
2041785 - 财政年份:2020
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
CAREER: Wearable Tutors in the Embodied Mathematics Classroom
职业:实体数学课堂中的可穿戴导师
- 批准号:
2026722 - 财政年份:2020
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
INT: Collaborative Research: Detecting, Predicting and Remediating Student Affect and Grit Using Computer Vision
INT:协作研究:使用计算机视觉检测、预测和纠正学生的情绪和毅力
- 批准号:
2104984 - 财政年份:2020
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
Developing Computational Thinking by Creating Multi-player Physically Active Math Games
通过创建多人体育数学游戏来发展计算思维
- 批准号:
1917947 - 财政年份:2019
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
CAREER: Wearable Tutors in the Embodied Mathematics Classroom
职业:实体数学课堂中的可穿戴导师
- 批准号:
1652579 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
INT: Collaborative Research: Detecting, Predicting and Remediating Student Affect and Grit Using Computer Vision
INT:协作研究:使用计算机视觉检测、预测和纠正学生的情绪和毅力
- 批准号:
1551594 - 财政年份:2016
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
EAGER: Teaching Computational Thinking through Programming Wearable Devices as Finite State Machines
EAGER:通过将可穿戴设备编程为有限状态机来教授计算思维
- 批准号:
1647023 - 财政年份:2016
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
DIP: Collaborative Research: Impact of Adaptive Interventions on Student Affect, Performance, and Learning
DIP:协作研究:适应性干预对学生情感、表现和学习的影响
- 批准号:
1324385 - 财政年份:2013
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
Collaborative Research: Personalized Learning: strategies to respond to distress and promote success
协作研究:个性化学习:应对困境和促进成功的策略
- 批准号:
1109642 - 财政年份:2011
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
相似海外基金
BD Spokes: SPOKE: MIDWEST: Collaborative: Advanced Computational Neuroscience Network (ACNN)
BD 辐条:辐条:中西部:协作:高级计算神经科学网络 (ACNN)
- 批准号:
2148729 - 财政年份:2021
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative: A Licensing Model and Ecosystem for Data Sharing
BD Spokes:SPOKE:NORTHEAST:协作:数据共享的许可模型和生态系统
- 批准号:
1947440 - 财政年份:2019
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
- 批准号:
1636786 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
- 批准号:
1636795 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
- 批准号:
1636832 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
- 批准号:
1636950 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
- 批准号:
1636909 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
- 批准号:
1636870 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
- 批准号:
1636919 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
- 批准号:
1636910 - 财政年份:2017
- 资助金额:
$ 42.91万 - 项目类别:
Standard Grant














{{item.name}}会员




